نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکده‌ی فوتونیک و فناوری‌های کوانتومی، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 13-14399511، تهران ـ ایران

چکیده

این مقاله، برهم­کنش تپ­های لیزر با شیشه­ی BK7 را مورد مطالعه قرار می­دهد. با بررسی ابعاد سطح کندوسوز شده، شاریدگی آستانه برای کندوسوز سطحی شیشه با تپ­های 40 fs با طول­موج مرکزی nm 800، در حدود 2.7 J/cm-2 به دست آمد. با انتقال محل کانون لیزر به زیر سطح و تغییر سرعت جابه‌جایی باریکه­ی لیزر فمتوثانیه عمق شیشه با تپ‌های لیزر فمتوثانیه میکروماشین کاری شد. با استفاده از تصویرهای دوربین CCD، حاصل از انتشار نور لیزر هلیم- نئون در درون شیشه‌ی میکروماشین کاری شده اثر به­جامانده پس از برهم­کنش با تپ­های µJ 0.35­ و به ازای سرعت‌های جاروب 1-0.01 mm s  مطالعه شد. یافته­ها نشان داد که در اثر برخورد 10 تپ با انرژی Jµ 0.35  در هر موضع، توری پراش درون شیشه تشکیل می­شود. گام توری پراش ایجاد شده در حدود mµ 4.52­  به­دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of diffractive grating creation in glass by using femtosecond laser pulses

نویسندگان [English]

  • R Goodarzi
  • F Hajiesmaeilbaigi

چکیده [English]

In this paper, the interaction of femtosecond laser pulses with BK7 glass is investigated. A Ti:sapphire femtosecond laser with the chirped pulse amplification is used. By studying the diameter of the ablated area, the threshold fluence for the 40 femtosecond pulses at the 800 nanometers is obtained to be around 2.7 J/cm2. By moving the position of the laser focus into depth of the glass, and by changing the translation speed of the femtosecond laser pulses, depth of the glass has been micro machined by laser pulses. By using CCD camera pictures, obtained from propagation of the He-Ne light through the micromachined region, effect of the interaction with three different translation speeds, 0.01, 0.02 and, 0.05 mm/s is investigated. The results show that the diffractive grating is formed inside the volume of the glass due to the interaction of 10 femtosecond laser pulses having 0.35 microjoules at each position. Finally, the created diffraction grid step is obtained about 4.52 micrometers.

کلیدواژه‌ها [English]

  • grating
  • Femtosecond laser
  • BK7 glass
  • ablation

مراجع

 

  1. P. Maine, D. Strickland, P. Bado, M. Pessot and G. Mourou, Generation of ultrahigh peak power pulses by chirped pulse amplification, IEEE J. Quantum Electron. 24 398–403 (1988).
  2. D. von der Linde, K. Sokolowski-Tinten and J. Bialkowski, Laser–solid interaction in the femtosecond time regime, Appl. Surf. Sci. 109110 1–10 (1997).
  3. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu and K. Hirao, Photowritten optical waveguides in various glasses with ultrashort pulse laser, Applied Physics Letters 71.23: 3329-3331 (1997).
  4. O. Efimov, S. Juodkazis and H. Misawa, Intrinsic single- and multiple-pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region, Phys. Rev. A 69 42903 (2004).
  5. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann and S. Nolte, Ultrashort laser pulse induced nanogratings in borosilicate glass, Appl. Phys. Lett. 104 211107 (2014).
  6. K. C. Phillips, H. H. Gandhi, E. Mazur and S. K. Sundaram, Ultrafast laser processing of materials: a review, Adv. Opt. Photonics 7 684–712 (2015).
  7. D. Correa, J. Almeida, G. Almeid, M. Cardoso, L. De Boni and C. Mendonça, Ultrafast Laser Pulses for Structuring Materials at Micro/Nano Scale: From Waveguides to Superhydrophobic Surfaces, Photonics 4 8 (2015).
  8. D. M. Rayner, A. Naumov and P. B. Corkum, Ultrashort pulse non-linear optical absorption in transparent media, Opt. Express 13 3208 (2005).
  9. K. M. Davis, K. Miura, N. Sugimoto and K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21 1729 (1996).

10. E. N. Glezer and E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials, Appl. Phys. Lett. 71 882 (1998).

11. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao and F. Starrost, Anomalous Anisotropic Light Scattering in Ge-Doped Silica Glass, Phys. Rev. Lett. 82 2199–202 (1999).

12. L. Sudrie, M. Franco, B. Prade and A. Mysyrowicz, Study of damage in fused silica induced by ultra-short IR laser pulses, Opt. Commun. 191 333–9 (2001).

13. J. D. Mills, P. G. Kazansky, E. Bricchi and J. J. Baumberg, Embedded anisotropic microreflectors by femtosecond-laser nanomachining, Appl. Phys. Lett. 81 196–8 (2002).

14. Y. Shimotsuma, P. G. Kazansky, J. Qiu and K. Hirao, Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses, Phys. Rev. Lett. 91 247405 (2003).

15. W. Cai, A. R. Libertun and R. Piestun, Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings, Opt. Express 14 3785, (2006).

16. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj and P. B. Corkum, Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching, Appl. Phys. A 84 47–61 (2006).

 

17. R. Taylor, C. Hnatovsky and E. Simova, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass, Laser Photonics Rev. 2 26–46 (2006).

18. P. G. KAZANSKY and Y. SHIMOTSUMA, Self-assembled sub-wavelength structures and form birefringence created by femtosecond laser writing in glass: properties and applications, J. Ceram. Soc. Japan 116 1052–62 (2008).

19. M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor and A. V. Kavokin, Exciton mediated self-organization in glass driven by ultrashort light pulses, Appl. Phys. Lett. 101 53120 (2012).

20. W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek and A. Y. Arai, Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing, Opt. Express 14 10117 (2006).

21. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj and P. B. Corkum, Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching, Appl. Phys. A 84 47–61 (2006).

22. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner and P. B. Corkum, Optically Produced Arrays of Planar Nanostructures inside Fused Silica, Phys. Rev. Lett. 96 57404 (2006).

23. W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek and A. Y. Arai, Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing, Opt. Express 14 10117 (2006).

24. S. A. Self, Focusing of spherical Gaussian beams, Appl. Opt. 22 658 (1983).

25. A. Ben-Yakar and R. L. Byer, Femtosecond laser ablation properties of borosilicate glass, J. Appl. Phys. 96 5316–23 (2004).

26. D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis and J. Siegel, Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon, Nanotechnology 27 265602 (2016).

27. J. Shingo Kanehira, S. I. Jinhai, Q. Jianrong, J. Koji Fujita and K. Hirao, Periodic Nanovoid Structures via Femtosecond Laser Irradiation, Nano Letters, 5(8), 1591-1595 (2005).

28. S. Richter, M. Heinrich, S. Döring, A. Tünnermann and S. Nolte, Formation of femtosecond laser-induced nanogratings at high repetition rates, Appl. Phys. A 104 503–7 (2011).

29. R. S. Taylor, E. Simova and C. Hnatovsky, Creation of chiral structures inside fused silica glass, Opt. Lett. 33 1312 (2000).

30. Y. Shimotsuma, P. G. Kazansky, J. Qiu and K. Hirao, Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses, Phys. Rev. Lett. 91 247405 (2003).

31. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj and P. B. Corkum, Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching, Appl. Phys. A 84 47–61 (2006).