نوع مقاله : مقاله پژوهشی

نویسندگان

1 1. پژوهشکده‌ی رآکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

2 2. مرکز نظام ایمنی هسته‌ای ایران، سازمان انرژی اتمی ایران، صندوق پستی: 836-14395، تهران - ایران

چکیده

سه میله­ی سوخت هسته­ای تازه که حاوی قرص­هایی با غنای مختلف و ابعاد متفاوت در درون لوله­های زیرکنیمی بودند، در رآکتور تحقیقاتی تهران مورد آزمون پرتونگاری نوترونی قرار گرفتند. برای کسب اطلاعات ساختار داخلی میله­های سوخت از دو روش متفاوت ثبت تصویر مبتنی بر استفاده از فیلم تک لایه­ی پرتونگاری و صفحه­ی تصویر فسفرسان استفاده شد. با استفاده از تصویرهای نوترونی حاصل از این آزمون، ارزیابی­های کمّی و کیفی میله­های سوخت انجام شد. در ارزیابی کیفی تصویرها، اجزای داخلی میله­های سوخت نظیر قرص­ها، فنرها و درپوش­های انتهایی به­خوبی قابل مشاهده بودند. فیلم تک لایه­ی پرتونگاری قدرت تفکیک مکانی بیش­تری نسبت به صفحه­ی تصویر داشت
به­گونه­ای که جزییات داخلی میله­ها و فاصله­های بین قرص­ها با وضوح بیش­تری قابل تشخیص بود. در ارزیابی کمّی، ابعاد قرص­ها و فاصله­ی بین آن­ها، و وابستگی سطح مقطع جذب به غنای قرص­ها اندازه­گیری و با اطلاعات ارایه شده توسط سازنده­ی سوخت مقایسه شدند. این اطلاعات در توافق خوبی با یک­دیگر بودند.

کلیدواژه‌ها

عنوان مقاله [English]

Non-destructive evaluation of nuclear fuel rods using neutron radiography at the Tehran Research Reactor

نویسندگان [English]

  • M Choopan Dastjerdi 1
  • H Khalafi 1
  • Y Kase saz 1
  • A Movafeghi 1
  • S. A Kermani 2

چکیده [English]

Three fresh fuel rods containing pellets inside zirconium tubes with three different enrichments and different dimensions have been evaluated using neutron radiography examinations at the Tehran Research Reactor. To obtain the information of the internal structure of the fuel rods, two different imaging methods, based on using single coated radiography film and phosphorous imaging plate were applied. The quantitative and qualitative evaluations of the fuel rods have been made using neutronic images of these examinations. In the qualitative evaluation of the images, the internal components of the fuel rod, such as pellets, springs, and end plugs, were well visible. The single coated radiography film had a better spatial resolution rather than the image plate so that the internal details of the rods and the gaps between the pellets were clearly detectable. In the quantitative evaluation, the pellets dimensions, the gaps between pellets, and the dependence of the absorption cross-section with the pellets enrichment have been measured and compared with the manufacturer specifications. This information was in good agreement with each other.

کلیدواژه‌ها [English]

  • Non-destructive testing
  • Neutron radiography
  • Nuclear fuel
  • Tehran research reactor
1. International Atomic Energy Agency, TecDOC-1604, Neutron Imaging: A Non-Destructive Tool for Materials Testing, Report of the coordinated research project, (IAEA, Vienna, 2008).
2. J. Thornoton, Enhanced radiography for aircraft materials and components, Eng. Failure Anal. 11, 207 (2004).
3. N. Takenaka, et al. In: Proceedings of the Sixth World Conference of Neutron Radiology; - Application of Neutron Radiology to Thermal Hydraulic Phenomena (Gordon and Beach Science Publishers, Switzerland, 2001), 503-506 (2001).
4. E.H. Lehmann, S. Hartmann, M.O. Speidel, Investigation of the content of ancient Tibetian metallic Buddha statues by means of neutron imaging methods, Archaeometry. 52 (3), 416 (2010).
5. J. Bakker, et al. In: Proceedings of the 2nd World Conference on Neutron Radiography; -Neutron radiography of light water fuel rods, (Springer, Paris, 1986) 381-393 (1986).
6. E.H. Lehmann, P. Vontobel, A. Hermann, Non-destructive analysis of nuclear fuel by means of thermal and cold neutrons, Nucl. Inst. and Meth. in Phys. Research A. 515, 745 (2003).
7. P. Von der Hardt, Rottger H., editors, Neutron radiography handbook, (D. Reidel Publishing Co., Dordrecht/Boston/London. 1981).
8. A. Alghem, et al., In: 17th WorldConference on Nondestructive Testing, NDT As a Tool for Post-Irradiation Examination, (NDT, Shangai, 2008) 1-6 (2008).
9. M. Helen, et al., The use of ionizing radiation to image nuclear fuel: A review, Prog. in Nucl. Ener., 85, 297 (2015).
10. Table of simple integral neutron cross-section data, JEFReport 14, (OECD, Japan, 1994).
11. J.C. Domanus, Reference Neutron Radiographs of Nuclear Reactor Fuel, (D. Reidel, Dordrecht, 1984).
12. M. Basturk, H. Tatlisu, H. Bock, Nondestructive inspection of fresh WWER-440 fuel assemblies, J. of Nucl. Mater. 350, 240 (2006).
13. U.K. Chaudhary, M. Iqbal, M. Ahmad, Defect sizing of post-irradiated nuclear fuels using grayscale thresholding in their radiographic images, Nucl. Eng. and Des. 240, 3455 (2010).
14. J.F.W. Markgraf, Collimators for Thermal Neutron Radiography, (D. Reidel, Dordrecht, 1987).
15. M. Dinca, M. Pavelescu, C. Iorgulis, Collimated neutron beam for neutron radiography, Rom. J. Phys  51, 435 (2006).
16. D.S. Hussey, et al., New neutron imaging facility at the NIST. Nucl. Inst. and Meth. in Phys. Res. A. 542, 1 (2005).
17. E.H. Lehmann, H. Pleinert, L. Wiezel, Design of a neutron radiography facility at the spallation source SINQ. Nucl. Inst. and Meth. in Phys. Res. A. 377, 14 (1996).
18. G.M. MacGillivray, J.S. Brenizer, Neutron Radiography System Design and Characterization, (AECL Res, Chalk River, 1994).
19. R. Yasuda, et al., Application of Neutron Imaging Plate and Neutron CT Methods on Nuclear Fuel and Materials, IEEE Trans. On Nucl. Sci. 52, 1, (2005).
20. N. Chankow, S. Punnachiya, S. Wonglee, Neutron radiography using neutron imaging plate, App. Rad. and Iso. 68, 662 (2010).
21. M.H. Choopan Dastjerdi, et al., Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor. Nucl. Inst. and Meth. in Phys. Res. A. 818, 1 (2016).
22. Safety Analysis Report of Tehran Research Reactor, (Atomic Energy Organization of Iran, Tehran, 2009).
23. K.K. Moghadam, A. Tabatabaeian, In: Proceedings of the 2nd World Conference on Neutron Radiography;
-Neutron Radiography facility for AEOI nuclear research center, (Springer, Paris, 1986) 25-32 (1986).
24. P. Kandlakunta, L.R. Caon, P. Mulligan, Measurement of internal conversion electrons from Gd neutron capture, Nucl. Inst. and Meth. in Phys. Res. A. 705, 36 (2013).
25. S. Fujine, et al., Application of imaging plate neutron detector to neutron radiography, Nucl. Inst. and Meth. in Phys. Res. A. 424, 200 (1999).
26. A.A. Harms, D.R. Wyman, Mathematics and Physics of Neutron Radiography, (D. Reidel Publishing Co., Dordrecht, Holland 1986).
27. American Standard and Testing Materials, Standard Test Method for Neutron Radiographic Dimensional Measurements. ASTM Standard E1469-97, (ASTM International, USA, 1997).