بهینه‌سازی فاصله منبع-آشکارساز پالس اکسی‌متر انعکاسی با استفاده از تحلیل تئوری انتشار پراکندگی نور در بافت ناهمگن جهت تشخیص دقیق هایپوکسی بافت تومورال

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

3 گروه مهندسی هسته‌ای، دانشکده‌ی مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر، صندوق پستی: 4413-15875، تهران ـ ایران

چکیده

پالس اکسی­متری یک روش بسیار مهم در نمایش علائم حیاتی محسوب می­شود. با توجه به محدودیت استفاده از پالس اکسی­متر انتقالی در بافت­های با ضخامت زیاد، هدف این پژوهش بر مطالعه و توسعه پالس اکسی­مترهای انعکاسی به دلیل نشان دادن سطح اشباع اکسیژن خون (2SaO) در هر ضخامتی متمرکز می­باشد. بدین منظور، با در نظر گرفتن مزایای تئوری انتشار فوتون نسبت به تئوری
بایر-لامبرت (Beer-Lambert Law) به ارایه یک مدل ریاضی (تحلیلی) جدید توسعه یافته برای بررسی شدت انتشار نور انعکاسی در یک محیط ناهمگن مانند انگشت اشاره دست پرداخته می­شود. سپس با استفاده از تحلیل مدل ریاضی به دست آمده، به بهینه­سازی فاصله آشکارساز نسبت به منبع انتشار نور در پالس اکسی­متر انعکاسی پرداخته می­شود به نحوی­که میزان دقت با کاهش حساسیت نسبت به تأثیر حرکت بر پراکندگی نور، افزایش یابد. برای راستی­آزمایی نتایج به دست آمده از مدل ریاضی، از نتایج شبیه­سازی مونت­کارلو به عنوان یک روش استاندارد و هم­چنین داده­های تجربی استفاده شد. این مقایسه نشان­دهنده­ی انطباق مناسب مدل ریاضی با نتایج مربوط به این دو روش با اختلاف جزیی می­باشد. فاصله بهینه آشکارساز از منبع نور نیز با استفاده از تابع حساسیت برای نور قرمز و مادون­قرمز به ترتیب mm 8/2 وmm8/4 به دست آمد. بررسی کلی نتایج بیان­گر آن است که می­توان ویژگی­های انتشار نور را با دقت خوبی از طریق مدل تحلیلی مورد ارزیابی قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of reflectance pulse oximeter source-detector space using analytical model of light propagation in heterogeneous tissue to accurate diagnosis of Hypoxia tumoral tissue

نویسندگان [English]

  • M. Mehrabi 1
  • M. Ghannadi Maragheh 2
  • S. Setayeshi 3
1 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran
2 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran – Iran
3 Department of Nuclear Engineering, Department of Medical Radiation Engineering, Amirkabir University of Technology, P.O.Box: 15875-4413, Tehran - Iran
چکیده [English]

Pulse oximetry is a very significant method in  medical monitoring . Due to the restriction in the use of the transmission pulse oximeter in high-density tissues, this research aims to focus on the study and development of the reflectance pulse oximeters, because it is able to show the blood oxygen saturation level (2SaO) in various densities. To this end, considering the benefits of photon diffusion theory over Beer-Lambert law, a new mathematical (analytical) method was developed to investigate the inensity reflective light propagation in a heterogeneous medium such as a fingerprint. Then, using the obtained analytical model, source-detector space was optimized so that by decreasing the sensitivity of the motion effects on light scattering the accuracy rate will increase. To verify the results obtained from the analytical model, Monte Carlo simulation results were used as a standard method compared to experimental data. This comparison showed the agreement of the analytical model with the results of these two methods with minor differences. By using the sensitivity function, the optimum distance of the detector from the light sourcewas obtained 4.8 mm and 2.8 mm for red and infrared lights, respectively. An overview of the results suggests that light propagation characteristics can be accurately assessed through an analytical model

کلیدواژه‌ها [English]

  • Pulse oximetry
  • Photon diffusion theory
  • Light propagation
  • Monte Carlo Simulation
1.             K. Peiwen, Q.T. Le, Galectin-1 links tumor hypoxia and radiotherapy, Glycobiology, 24 (10), 921 (2014).

 

2.             J.G. Rajendran, K.A. Krohn, Imaging hypoxia and angiogenesis in tumors, Radiologic Clinics, 43 (1), 169 (2005).

 

3.             B. Venema, et al. Advances in reflective oxygen saturation monitoring with a novel in-ear sensor system: Results of a human hypoxia study, IEEE Transactions on Biomedical Engineering, 59 (7), 2003 (2012).

 

4.             A. Jubran, Pulse oximetry, Critical Care, 19 (1),  272 (2015).

 

5.             R. Baran, et al. Baran and Dawber's diseases of the nails and their management, (John Wiley & Sons, 2012).

 

6.             R. K. Scher, C.R. Daniel, Nails: therapy, diagnosis, surgery, (Saunders Philadelphia, 1990).

 

7.             D.O. Smith, et al. Artery anatomy and tortuosity in the distal finger, Journal of Hand Surgery, 16 (2), 297 (1991).

 

8.             D.O. Smith, et al. The distal venous anatomy of the finger, Journal of Hand Surgery, 16 (2), 303 (1991).

 

9.             G.L. Lucas, The pattern of venous drainage of the digits, The Journal of hand surgery, 9 (3), 448 (1984).

 

10.          M. Darowish, et al. Dimensional analysis of the distal phalanx with consideration of distal interphalangeal joint arthrodesis using a headless compression screw, Hand, 10 (1), 100 (2015).

 

11.          W.A. Bruls, J.C. Van Der Leun, Forward scattering properties of human epidermal layers, Photochemistry and photobiology, 40 (2), 231 (1984).

 

12.          K. Shimizu, Remote sensing of microparticles by laser scattering for medical applications, 1979.

 

13.          A. Ishimaru, Wave propagation and scattering in random media, (Academ. Press, 1978).

 

14.          V.V. Tuchin, Light scattering study of tissues, Physics-Uspekhi, 40 (5), 495 (1997).

 

15.          J. Steinke, A. Shepherd, Diffusion model of the optical absorbance of whole blood, JOSA A, 5 (6), 813 (1988).

 

16.          J.M. Schmitt, et al. An integrated circuit-based optical sensor for in vivo measurement of blood oxygenation, IEEE transactions on Biomedical Engineering, 1 (2), 98 (1986).

 

17.          J.M. Schmitt, et al. Multilayer model of photon diffusion in skin, J. Opt. Soc. Amer. A, 7, 2141 (1990).

 

18.          D.A. Boas, Diffuse photon probes of structural and dynamical properties of turbid media: theory a 19.        S. Arridge, et al. A finite element approach for modeling photon transport in tissue, Medical physics, 20 (2), 299 (1993).

 

20.          R.J. Fretterd, R.L. Longini, Diffusion dipole source, JOSA, 63 (3), 336 (1973).

 

21.          J.G. Webster, Design of pulse oximeters, (CRC Press, 1997).

 

22.          R. Groenhuis, et al. Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory, Applied optics, 22 (16), 2456 (1983).nd biomedical applications, (Citeseer, 1996).

 

23.          I. Dayan, et al. Photon migration in a two-layer turbid medium A diffusion analysis, Journal of Modern Optics, 39 (7), 1567 (1992).

 

24.          S. Takatani, M.D. Graham, Theoretical analysis of diffuse reflectance from a two-layer tissue model, IEEE Transactions on Biomedical Engineering, 1 (12), 656 (1979).

 

25.          G. Kumar, J. Schmitt, Optimal probe geometry for near-infrared spectroscopy of biological tissue, Applied optics, 36 (10), 2286 (1997).

 

26.          L. Wang, et al. MCML-Monte Carlo modeling of light transport in multi-layered tissues, Computer methods and programs in biomedicine, 47 (2), 131 (1995).