نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 دانشکده‌ی مهندسی شیمی، دانشگاه صنعتی بابل، صندوق پستی: 484، بابل ـ ایران

چکیده

در این پژوهش، سازوکار بازیابی وانادیم از کان­سنگ مگنتیتی ساغند یزد به وسیله کربنات سدیم به عنوان اکسیدان و تکنولوژی فرایند فروشویی اسیدی مورد بررسی  قرار گرفت و هم­چنین تأثیر پارامترهای مختلف بر روی سینتیک انحلال وانادیم بررسی گردید. نتایج نشان داد که درجه حرارت تشویه، زمان تشویه و کربنات سدیم به عنوان عامل تشویه و هم­چنین درجه حرارت فروشویی، زمان فروشویی، اندازه ذرات کان­سنگ، غلظت اسید و نسبت مایع به جامد از عوامل بسیار مهم در بازده استخراج وانادیم از کان­سنگ می­باشند. پارامتر­های بهینه فرایند شامل درجه حرارت °C 1000، زمان 2 ساعت و مقدار نمک کربنات سدیم 40 درصد وزنی در فرایند تشویه در نظر گرفته شد، هم­چنین درجه حرارت °C 90، زمان 5 ساعت، اندازه ذرات کم­تر از 100 میکرون، غلظت اسید 4 مولار و نسبت مایع به جامد 1-mL.g 1/10 در فرایند فروشویی به دست آمد. با توجه به بررسی سینتیکی فرایند فروشویی وانادیم بر اساس مدل SCM، چنین نتیجه شد که کنترل­کننده واکنش فرایند فروشویی، نفوذ داخل ذره­ای می­باشد. بنابراین فرایند فروشویی وانادیم از مدل سینتیکی 3/2(X-1)-X3/2-1 = KD tپیروی می­کند. هم­چنین انرژی اکتیواسیون فرایند برابر با 19/2 کیلو کالری بر مول حاصل گردید ­که با مقادیر تئوری گزارش شده برای حالتی که نفوذ داخل ذر­ه­ای کنترل­کننده واکنش است، مطابقت دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Acid leaching kinetic study of vanadium from Saghand –e- Yazd magnetite ore

نویسندگان [English]

  • D. Ghoddocy Nejad 1
  • A.R. Khanchi 1
  • M. Taghizadeh 2

1 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

2 Chemical Engineering Department, Babol University of Technology, P.O.Box: 484, Babol - Iran

چکیده [English]

In the present research, the vanadium recovery mechanisms from Saghand –e- Yazd magnetite ore by sodium carbonate was studied as oxidant and acid leaching technology, and also the effect of the different parameters on the kinetics of the vanadium dissolution was investigated. The results showed that the temperature of roasting, the time of roasting  , sodium carbonate as the factor of roasting, as well as the temperature of leaching, time of leaching, size of ore particles, sulfuric acid concentration, and liquid to solid ratio are very important factors in the efficiency of vanadium extraction from ore. Optimum parameters in roasting process were considered temperature: 1000 °C, roasting  time: 2 h, sodium carbonate: 40 wt% (additive roasting), also leaching temperature: 85 °C, leaching time: 4 h, particle size: smaller than 100 microns the concentration of sulfuric acid: 4 M and liquid to the solid ratio: 10/1 mL/g were obtained in the leaching process. According to the kinetic study of the vanadium leaching based on SCM model, it was concluded that the control effect of the leaching process is intra-particle penetration. Therefore, the vanadium leaching process follows the 1-2/3X-(1-X)2.3 kinetic model. Also, the activation energy of the process was 2.19 kcal per mole, which corresponds to the reported theoretical values for the state in which the intra-particle penetration controls the process

کلیدواژه‌ها [English]

  • Vanadium
  • Kinetic
  • Roasting
  • Leaching
  • Activation energy
1.             Y.M. Zhang, et al. The technology of extracting vanadium from stone coal in china:history, current status and future prospect. Hydrometallurgy, 109, 116-124 (2011a).
 
2.             USGS, Vanadium, Mineral Commodity Summaries. http//minerals.Usgs.gov/minepubs/ commodity/vanadium/mcs-vanad. pdf last accessed 16 november, (2012).
 
3.             R.R. Moskalyk, A.M. Alfantazi, Processing of vanadium: a review. Minerals Engineering, 16(9), 793-805 (2003).
 
4.             A. Archana, Effluent treatment and by-product recovery from the sludge of an almina plant.       Miner.Eng.18, 463-465 (2005).
 
5.             C.K. Gupta, N. Krishnamurthy, Extractive Metallurgy of Vanadium. Elsevier, Netherlands, 151-320 (1992).
 
6.             F. Habashi, Handbook of Extractive Metallurgy. Vol.3.Wiley-VCH. Germany. (1998).
 
7.             Z.Y. Bin, Progress of the research on extraction of vanadium pentoxide from stone coal and the market of the  . Human Nonferrous Metals, 22(1), 16-20 (2006).
 
8.             L. Perron, Vanadium, Natural Resources Canada, Minerals and Resources Sector, Canada Minerals Yearbook, 59.1-59.7 (2001).
 
9.             H.-Y. Li, et al. Asychronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting – water leaching. Hydrometallurgy, 156, 124-135 (2015).
 
10.          P.B. Queneau, et al. Processing of petroleum coke for recovery of vanadium and nikel. Hydrometasllurgy, 22, 3-24 (1989).
 
11.          H. Qiu, et al. Dynamics study on vanadium extraction technology from chloride leaching steel slag. Rare Met.Mater.Eng, 42, 696-699 (2013).
 
12.          Z. Zhao, M. Guo, M. Zhang, Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method. J.Hazard, Mater, 286, 402-409 (2015).
 
13.          M. Li, et al. Kinetics of vanadium dissolution from black in pressure acid leaching. Hydrometallurgy, 104, 193-200 (2010).
 
14.          F. Wang, et al. A mechanism of calcium fluoride – enhanced vanadium leaching from stone coal. Int. J. Miner. Process, 145, 87-93 (2015).
 
15.          M. Aarabi-Karasgani, et al. Leaching of vanadium from LD converter slag using sulfuric acid. Hydrometallurgy, 102, 14-21 (2010).
 
16.          Z. Xiangyang, et al. Leaching of vanadium from carbonaceous shale. Hydrometallurgy, 99(1), 97-9 17.
 
17.          Zhu. Zhang, et al. Acid leaching of vanadium from roasted residue of stone coal, Transactions of Nonferrous Metals Society of China, 20, 107-111 (2010).
 
18.          H. Dongsheng, F. Qiming, Z. Guofan, An environmentally friendly technology of vanadium extraction from stone coal, Minerals Engineering, 1184-1186 (2007).
 
19.          S.A. Tabatabaei, Recovery and extraction of vanadium from choghart iron ore. Research and development centers industries and mines conference. Tehran, Iran. 2004. (in persian)
 
20.          M.H. Taghizadeh, Application of iron ores mines of Gaz wells, Zarand and Saghand in the production of iron. Iranian mining engineering conference, Tarbiat Modares University. Tehran, Iran. (2005). (in persian) 
 
21.          E.A. Abdel-Aal, M.M. Rashad, Kinetics study on the leaching of spent nikel oxide catalyst with sulfuric acid. Hydrometallurgy, 74, 189-194 (2004).
 
22.          F.W.Y. Momade, Z. G. Momade, Astudy of the kinetics of reductive leaching of manganese oxide ore in aqueous methanol-sulfuric acid medium. Hydrometallurgy, 54, 25-39 (1999).
 
23.          O. Levenspiel, Chemical reaction engineering. 2nd ed. John Wiley and Sons, New York, USA. (1999).
 
24.          D. Ghoddocy nejad, M. Tghizadeh, Study of parameters affecting the recovery of vanadium from Saghand – e- Yazd ore (Anomally –II) using alkaline roasting – acid leaching process. Journal of Nuclear Science and Technology, 83 (1), 62-71 (2018).(in persian)
 
25.          R. Vaghar, Hydrometallurgy. Iranian Copper Industry  Co. Iran, in Farsi, ( 1998).
 
26.          F. Habashi, Principles of extractive metallurgy, vol.1. Gordon and Breach, New York. (1969).
27.          M.E. Ibrahim, T.A. Lasheen, H.B. A.S. Hassib Helal, Oxidative leaching kinetics of U(IV) deposite under acidic oxidizing conditions. Journal of Environmental chemical Engineering, 1, 1194-1198 (2013).
 
28.          G.H. Xuin, D.Y.Yu, Y.F. Su, Leaching of scheelite by hydrochloric acid in the presence of phosphate, Hydrometallurgy 16, 27-40 (1986).
 
29.          S.L. Pohlman, F.A. Olson, A kinetic study of acid leaching of chrysocolla using a weight loss technique, in: Solution Mining Symposium, AIME, New York, 447-460 (1974).9 (2009).