مطالعه پارامتر تغییرشکل چارقطبی محوری در هسته‌های سنگین و فوق سنگین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده‌ی فیزیک، دانشگاه دامغان، صندوق پستی: 41167-36716، دامغان ـ ایران

2 گروه فیزیک، دانشکده‌ی علوم، دانشگاه فردوسی مشهد، صندوق پستی: 1436-91775، مشهد ـ ایران

چکیده

در این مقاله، سطوح انرژی پتانسیل هسته‏هایی با اعداد اتمی 100-90 Z = را در چارچوب میکرو- ماکروسکوپیکی نیلسون-استروتینسکی پیچ و تابی (CNS) مطالعه شده، و سپس پارامتر تغییر شکل چارقطبی محوری ε2 برای این ویژه هسته­ها (نوکلئیدها) محاسبه  شده­اند. محاسبات نشان داد، در این ناحیه جرمی، هسته‌ها در حالت پایه‌‌ ‌‌دارای تغییر شکل میانگین در حدود 20/0= ε2، و در حالت ایزومری دارای تغییر شکل میانگین در حدود 60/0= ε2 هستند. با افزایش تعداد نوترون­ها یا تعداد پروتون­ها، پارامتر تغییر شکل چارقطبی محوری افزایش کمی می‌یابد و کمینه‌های پتانسیل در تغییر شکل‌های نسبتاً بزرگ­تری ظاهر می‌شوند. بنابراین، در ناحیه جرمی مورد مطالعه، با افزایش عدد جرمی هسته کشیده‏تر خواهد شد. نتایج به دست آمده از مدل با نتایج تجربی و هم­چنین نتایج دیگر مدله­ای نظری مقایسه شده­اند. این مقایسه نشان می­دهد مدل CNS در کنار مدل HFBCS از دقت بهتری در مقایسه با دیگر مدل­ها برخوردار هستند و بنابراین مدل­های مناسبی برای تولید پارامترهای تغییر شکل چارقطبی هسته­های سنگین و فوق سنگین هستند

کلیدواژه‌ها


عنوان مقاله [English]

Study of the quadrupole deformation parameter in heavy and superheavy nuclei

نویسندگان [English]

  • H. Zanganeh 1
  • A. Kardan 1
  • M.H. Hadizadeh Yazdi 2
1 1. Department of Physics, Damghan University, P.O.Box: 36716-41167, Damghan - Iran
2 Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, P.O.Box: 91775-1436, Mashhad - Iran
چکیده [English]

In this paper, the potential energy surfaces of nuclei with atomic numbers Z=90-100 within the microscopic-macroscopic Cranked Nilsson-Strutinsky (CNS) formalism are studied, and the axial quadrupole deformation parameter for these isotopes has been calculated. Our calculations showed that the nuclei in this mass region have an average deformation about ε2=0.2 in the ground state and an average deformation about ε2=0.6 in the isomeric state. With increasing the neutron number or proton number, the axial quadrupole deformation increases slightly, and the potential minima appear at a relatively larger deformation. Therefore, in the studied mass region, the nucleus will be more elongated with increasing the mass number. Also the effect of change of spin on the fission barrier height is studied. The results obtained from the CNS model was compared with the experimental results and also the results of other theoretical models. This comparison showed that the CNS models, as well as the HFBCS model have the better accuracy in comparison with the other models, and so these are the proper models to produce the quadrupole deformation parameters of heavy and superheavy nuclei.

کلیدواژه‌ها [English]

  • Granked Nilsson-Strutinsky model
  • Axial quadrupole deformation parameter ε2
  • Ground state
  • Isomeric state
  • Fission barrier height
1.             Niels Bohr, John Archibald Wheeler, The mechanism of nuclear fission, Phys. Rev. 56, 426 (1939).

 

2.             Otto Hahn, Fritz Strassmann, Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle, Naturwissenschaften 27, 11 (1939).

 

3.             Lise Meitner, Otto Robert Frisch, Products of the fission of the uranium nucleus, Nature 143, 471 (1939).

 

4.             Yi Zhu, J.C. Pei, Thermal fission rates with temperature dependent fission barriers, Phys. Rev. C 94, 024329 (2016).

 

5.             E. Walter Meyerhof, Elements of nuclear physics, New York, McGraw-Hill, (1967).

 

6.             Younes. Walid, D. Gogny, Microscopic theory of fission, In AIP Conference Proceedings, 1005, 194, (2008).

 

7.             O. Lourenço, M. Dutra, D.P. Menezes, Critical parameters of consistent relativistic mean-field models, Phys. Rev. C 95, 065212 (2017).

 

8.             T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).

 

9.             A. Kardan, et al, Interpretation of the large-deformation high-spin bands in select A=158-168 nuclei, Phys. Rev. C 86, 014309 (2012).

 

10.          H. Taheri, A. Kardan, M.H. Hadizadeh Yazdi, Normal-deformed structures in hafnium isotopes, Phys. Rev. C 98, 054313 (2018).

 

11.          M. Akbari, A. Kardan, Shape evolution and coexistence in neutron-deficient Kr, Rb, Sr and Zr nuclei, Nucl. Phys. A 990, 109 (2019).

 

12.          A. Kardan, S. Nejati, Nonaxial hexadecapole deformation effects on the fission barrier, Int. J. Mod. Phys. E 25, 1650047 (2016).

 

13.          V.M. Strutinsky, The fission width of excited nuclei, Phys. Lett. B 47, 121 (1973).

 

14.          K. Pomorski, J. Dudek, Phys. Rev. C 67, 044316 (2003).

 

15.          Horst Roepenack, Fritz U. Schlemmer, J. Gerhard Schlosser, Development of thermal plutonium recycling, Nucl. Tech. 77, 175 (1987).

 

16.          Marvin Baker Schaffer, Abundant thorium as an alternative nuclear fuel: Important waste disposal and weapon proliferation advantages, Energy Policy 60, 4 (2013).

 

17.          S. Banerjee, E. Critoph, R.G. Hart, Thorium as a nuclear fuel for CANDU reactors, The Canad. J. Chem. Eng. 63, 291 (1975).

 

18.          K. Anantharaman, et. al. Thorium based fuel reprocessing and refabrication technologies and strategies, In Eleventh annual conference of Indian Nuclear Society on power from thorium status, strategies and directions. 2, invited talks. (2000).

 

19.          David Sylvain, Elisabeth Huffer, Hervé Nifenecker, Revisiting the thorium-uranium nuclear fuel cycle, Europhysics News 38, 24 (2007).

 

20.          J.R. Lamarsh, Introduction to nuclear reactor theory, 2nd. (1983).

 

21.          Robert George Keepin, Physics of nuclear kinetics, Addison-Wesley Pub. Co., (1965).

 

22.          M. Bhuyan, et. al. Neck configuration of Cm and Cf nuclei in the fission state within relativistic mean field formalism, Physical Review C 100, 054312 (2019).

 

23.          Chai, Qing-Zhen, Wei-Juan Zhao, Hua-Lei Wang, Effects of Various Deformation on the First Fission Barrier in Even-A N= 152 Isotones. Comm.  Theo. Phys. 71, 67 (2019).

 

24.          R.L. Fleischer, P.B. Price, R.M. Walker, Neutron flux measurement by fission tracks in solids, Nucl. Sci. Eng. 22, 153 (1965).

 

25.          J. Planchard, On the calculation of flux in slightly subcritical reactors with external neutron sources, Prog. Nucl. Ene. 23, 181 (1990).

 

26.          E.D. Blakeman, Summary Description of the 252Cf-Source-Driven Noise Analysis Method for Measurement of Sub-criticality, Oak Ridge National Laboratory, Tennessee (2008).

 

27.          R. Méndez-Villafañe, et al, Determination of the emission rate of an Am–Be neutron source with a Bonner sphere spectrometer, Rad. Meas. 45, 1271 (2010).

 

28.          Pritychenko, et. al. Tables of E2 transition probabilities from the first 2+state in even-even nuclei, At. Data Nucl. Data Tables 107, 1 (2016).

 

29.          Qing-Zhen Chai, et. al. Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei, Chin. Phys. C 42, 054101 (2018).