نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه پرتوپزشکی، مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر، صندوق پستی: 15875-4413، تهران- ایران

2 پژوهشکده‌ی فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

3 گروه رادیوتراپی، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، صندوق پستی: 354-14665، تهران- ایران

چکیده

در تشخیص­های بالینی خاص، قدرت مکان­یابی PET در تعیین عارضه نسبت به تصویربرداری‌های آناتومیکی معمولی هم­چون CT و MRI بیش­تر بوده و تفسیر تصاویر PET، کمی دشوار است. ترکیب تصاویر PET و CT راه حلی برای تعیین یافته­های غیرطبیعی، به دلیل عدم وجود نشانه­های اختصاصی آناتومیکی است. در سال­های اخیر PET/CT نقش مهمی در تشخیص تومورها، طراحی درمان پرتودرمانی و ارزیابی پاسخ به درمان، دارد. متفاوت بودن زمان تصویربرداری PET و CT، به ویژه در ناحیه ریه، سبب به وجود آمدن آرتیفکت و در نتیجه خطا در تخمین مقدار جذب و تعیین حجم تومور می­شود. هدف از این مقاله، بررسی خطاهای کمی و کیفی ناشی از آرتیفکت‌های تنفسی در تومورهای ریه است. بدین­منظور از فانتوم XCAT جهت شبیه­سازی حرکت تنفسی و STIR جهت اعمال نقشه­های تضعیف بر تصاویر PET و بازسازی تصاویر استفاده شد. ارزیابی نتایج به کمک آنالیز ROI و پارامتر SULmax صورت گرفت. تصاویر حاصل از روش­های مختلف تصحیح تضعیف بیانگر تأثیر ناچیز حرکت تنفسی بر نواحی بالای ریه می­باشد. نتایج نشان داد بهترین روش بررسی اولیه تصاویر PET جهت استخراج اندازه و موقعیت تومور در ریه، و سپس تصمیم‌گیری در مورد فاز تنفسی مناسب برمبنای اندازه و موقعیت تومور، می­باشد

کلیدواژه‌ها

عنوان مقاله [English]

Qualitative and quantitative assessment of the effect of respiratory movement on right lung tumors in PET/CT images

نویسندگان [English]

  • F. Gholami 1
  • M. Shamsaei-Zafarghandi 1
  • E. Alibeigi 2
  • M. Sanei 3
  • B. Teymourian 1

1 Medical Radiation, Faculty of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box: 4413-15875, Tehran, Iran

2 Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14155-1339, Tehran-Iran

3 Department of Radiotherapy, School of Medicine, Iran University of Medical Sciences, P.O. Box: 14665-354, Tehran, Iran

چکیده [English]

For specific clinical diagnoses, positron emission tomography (PET) can detect more sites of disease than conventional anatomical imaging such as x-ray computed tomography (CT) or magnetic resonance imaging (MRI). Interpretation of PET can be difficult; however, PET images have few anatomical landmarks for determining the location of abnormal findings. Combining PET and CT images acquired sequentially on their separate devices provides a partial solution to this problem. In earlier years PET/CT has an important role in detecting tumors, planning radiation treatment and evaluating response to therapy. Differences in PET and CT imaging time, especially in the lung region, cause artifacts and errors in estimating tumor uptake and volume determination. The purpose of this paper was to investigate qualitative and quantitative errors due to respiratory artifacts on tumors of the lung. For this purpose, the XCAT phantom was used to simulate respiratory motion and also, STIR was used to apply attenuation maps on reconstruction of PET images. The evaluation of results was performed by ROI and SULmax parameters. The images from various methods of attenuation correction, indicated that respiratory motion on regions above the lungs is poorly. The best method is the Initial review of PET images to obtain the size and location of the tumor and then make a decision about the appropriate respiratory phase based on the size and location of the tumor for attenuation correction of PET images.

کلیدواژه‌ها [English]

  • PET
  • CT
  • XCAT phantom
  • ROI
  • STIR
  • SULmax

1.             M. Aristophanous et al. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. International Journal of Radiation Oncology* Biology* Physics. 82 (1), 99-105, (2012).

 

2.             D.W. Townsend, T. Beyer, and T.M. Blodgett, PET/CT scanners: a hardware approach to image fusion. Seminars in nuclear medicine. 33 (3), (2003(.‏

 

3.             H. Zaidi, and B. Hasegawa, Determination of the attenuation map in emission tomography. Journal of Nuclear Medicine. 44 (2), 291-315, (2003).

 

4.             D.W. Townsend et al. PET/CT today and tomorrow. The journal of nuclear medicine. 45, (2004).‏

 

5.             A.S. Nehmeh et al. Effect of respiratory gating on quantifying PET images of lung cancer. Journal of nuclear medicine. 43 (7), (2002).

 

6.             C. Liu et al. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Physics in medicine and biology. 54 (24), (2009).‏

 

7.             T-C. Huang and Y-C. Wang, Deformation effect on SUVmax changes in thoracic tumors using 4-D PET/CT scan. PLoS One. 8 (3), (2013).‏

 

8.             Sh. Nagamachi et al. Reproducibility of deep inspiration breath-hold 18F-FDG PET/CT technique in diagnosing cancer located in the area affected by respiratory motion. Journal of Nuclear Medicine. 49 (1), (2008).‏

 

9.             T-C. Huang et al. Respiratory motion reduction in PET/CT using abdominal compression for lung cancer patients. PloS one. 9 (5), (2014).‏

 

10.          J. Wang, Motion Correction Algorithm of Lung Tumors for Respiratory Gated PET Images. (2009).‏

 

11.          P. Geramifar et al. Respiratory-induced errors in tumor quantification and delineation in CT attenuation-corrected PET images: effects of tumor size, tumor location, and respiratory trace: a simulation study using the 4D XCAT phantom. Molecular Imaging and Biology. 15 (6), 655-665, (2013).

 

12.          J. Vandemeulebroucke, Motion modelling and estimation for image guided radiation therapy. Diss. Ph.D. thesis, L’Institut National des Sciences Appliqu’ees de Lyon, (2010).‏

 

13.          P. Mishra et al. Adaptation and applications of a realistic digital phantom based on patient lung tumor trajectories. Physics in Medicine & Biology. 57 (11), (2012).‏

 

14.          C. Lee et al. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models. Physics in Medicine & Biology. 52 (12), (2007).‏

 

15.          K. Thielemans et al. STIR: software for tomographic image reconstruction release. Physics in Medicine & Biology. 57 (4), (2012).‏

 

16.          A.M. Loening and S.S. Gambhir, AMIDE: a free software tool for multimodality medical image analysis. Molecular imaging. 2 (3), (2003).‏

 

17.          C.A. Schneider, S.R. Wayne, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature methods. 9 (7), (2012).‏

 

18.          T.J. Collins, ImageJ for microscopy. Biotechniques. 43 (1), 25-30 (2007).‏

 

19.          V. Girish, and A. Vijayalakshmi, Affordable image analysis using NIH Image/ImageJ. Indian journal of cancer. 41 (1), (2004).‏

 

20.          Y. Sugawara et al. Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology. 213 (2), 521-525, (1999).‏

 

21.          N.C. Krak et al. Measuring [18F] FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. European journal of nuclear medicine and molecular imaging. 30 (5), 674-681, (2003).‏

 

22.          R.L. Wahl et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 50 (1), (2009).‏

 

23.          H. Young et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European journal of cancer. 35 (13), 1773-1782, (1999).

 

24.          M.R. Ay et al. Comparative assessment of energy-mapping approaches in CT-based attenuation correction for PET. Molecular Imaging and Biology. 13 (1), 187-198 (2011).