طراحی منبع باریکه یونی جهت استفاده در سامانه گرمایش تزریق باریکه خنثی یک توکامک نمونه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 51113-14399، تهران - ایران

2 دانشکده‌ی فیزیک و مهندسی انرژی، دانشگاه صنعتی امیرکبیر، صندوق پستی: 4413-15875، تهران- ایران

10.24200/nst.2020.1118

چکیده

در این مقاله، با استفاده از نرم‌افزار کامسول به طراحی و شبیه­سازی یک منبع تولید یون براساس مولد پلاسمای چگال هلیکونی و سیستم استخراج‎کننده متناسب با آن جهت استفاده در طراحی سامانه گرمایش تزریق باریکه خنثی برای یک توکامک نمونه مانند توکامک دماوند پرداخته شده است. براساس محاسبات جهت افزایش دمای الکترونی پلاسمای این توکامک به 300 الکترون ولت و دمای یونی به 150 الکترون ولت، این توکامک نیازمند یک سامانه تزریق باریکه خنثی با انرژی 5/4 کیلوالکترون ولت، جریان 7/6 آمپر و توان 15/30 کیلووات می‌باشد. در این راستا در مدل‌سازی حاضر یک سیستم مولد پلاسمای هلیکونی با چگالی 1018×51/5 یک بر مترمکعب، دمای الکترونیپلاسما 8/2 الکترونولت و سیستم استخراج‌کننده‌ای با 280 حفره (قطر 5/3 میلی ­متر) و جریان باریکه یونی 7 آمپر، جهت استفاده در طراحی این سامانه گرمایشی، طراحی و شبیه‌سازی و ارایه شده است. هم­‌چنین در این طراحی تمامی مسایل نوری باریکه یونی از قبیل واگرایی، بار فضایی، و قطر باریکه که می‌‎تواند بر کیفیت باریکه تأثیر بگذارد، مورد بررسی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Design of ion beam source for a sample tokamak neutral beam injection heating system

نویسندگان [English]

  • S. Fazelpour 1
  • A. Chakhmachi 1
  • H. Sadeghi 2
1 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14399-51113, Tehran – Iran
2 Department of the Energy Engineering and Physics, Amirkabir University of Technology, P.O.Box: 15875-4413, Tehran – Iran
چکیده [English]

In this paper, the design and simulation of ion source based on a helicon plasma generator and its corresponding extraction system for design of the neutral beam injection heating system of a sample tokamak like Damavand tokamak using COMSOL software have been investigated. Based on our previous calculations, to increase the electron temperature of this tokamak to 300 eV and the ion temperature to 150 eV, it requires a neutral beam injection system with energy 4.5 KeV, 6.7 A current, and 30.15 kW power. In this regard, in the present model, a dense helicon plasma source with an electron density of 5.51×1018 m-3, an electron temperature of 2.8 eV and an extraction system with 280 holes (3.5 mm in diameter) and 7 A ion beam for this heating system were designed, simulated and presented. Also, in this design, all the optical issues of the ion beam such as divergence, space charge, and beam size which can affect the beam quality are investigated.

کلیدواژه‌ها [English]

  • NBI system
  • ion source
  • beam extraction
  • Tokamak
  • space charge
1.             J. Wesson, D.J. Campbell, Tokamaks, Oxford University Press. 149 (2011).

 

2.             G.G. Kelley, O.B. Morgan, L.D. Stewart, Neutral-beam-injection heating of toroidal plasmas for fusion research, Nuclear Fusion, 12 (1972).

 

3.             G. Ikovic, Neutral beam plasma heating.

 

4.             P. Vincenzi, Interaction between neutral beam fast particles and plasma in fusion experiments, (2016).

 

5.             M. Kazemi, R. Amrollahi, Proton beam simulation of duoplasmatron ion source for diagnostic neutral beam of Alborz tokamak, Fusion Engineering and Design. 127, 1 (2018).

 

6.             S. Fazelpour, et al. Design and simulation of NBI heating system using high dense helicon plasma source for Damavand Tokamak, Fusion Engineering and Design. 137, 152 (2018).

 

7.             A.N. Karpushov, et al., Neutral beam heating on the TCV tokamak, Fusion Engineering and Design. 123, 468 (2017).

 

8.             A.N. Karpushov, et al., A scoping study of the application of neutral beam heating on the TCV tokamak, Fusion Engineering and Design. 86(6), 868-871  (2011).

 

9.             A.N. Karpushov, et al., Upgrade of the TCV tokamak, first phase: Neutral beam heating system., Fusion Engineering and Design. 96, 493-497 (2015).

 

10.          T.S. Kim, S.H. Jeong, S.R. In, New ion source for KSTAR neutral beam injection system, Review of Scientific Instruments. 83(2), 02B112 (2012).

 

11.          H.L. Wei, et al. Recent progress on the 1MW-NBI system on HL-2A Tokamak, EPS/ICPP Conference (2012).

 

12.          L.He, et al., Measurement of HL-2A NBI beam profile and beam power, Plasma Science and Technology. 11(5), 613 (2009).

 

13.          M.L. Mayoral, et al., On the challenge of plasma heating with the JET metallic wall, Nuclear Fusion. 54(3), 033002 (2014).

 

14.          F.F. Chen, R.W. Boswell, Helicons-the past decade, IEEE Trans Plasma Sci., 25(6), 1245-57 (1997).

 

15.          R.W. Boswell, F.F. Chen, Helicons-the early years, IEEE Trans Plasma Sci., 25(6), 1229-44 (1997).

 

16.          F.F. Chen, Plasma ionization by helicon waves, Plasma Physics and Controlled Fusion. 33(4), 339 (1991).

 

17.          F.F. Chen, Permanent magnet helicon source for ion propulsion, IEEE Trans plasma Sci, 36(5), 2095-2110 (2008).

 

18.          F.F. Chen, Experiments on helicon plasma sources, Journal of Vacuum Sci Technology A: Vacuum, Surfaces, and Films. 10(4), 1389-1401 (1992).

 

19.          I.V. Shikhvotsev, et al., Correlation of wave propagation modes in helicon plasma with source tube lengths., Physics of Plasmas. 24(1), 013518 (2017).

 

20.          C. Niu, et al., Correlation of wave propagation modes in helicon plasma with source tube lengths, Physics of Plasmas. 24(1), 013518 (2017).

 

21.          X. Zhang, et al., Pressure dependence of an ion beam accelerating structure in an expanding helicon plasma, Physics of Plasmas. 25(2), 023503 (2018).

 

22.          K. Choe, et al., Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus, Review of Scientific instruments. 85(2), 02B318 (2014).

 

23.          S. Mordyk, et al., High-plasma-density helicon source for ion beam application, 13th International Congress on Plasma Physics. 4 (2006).

 

24.          N. Sharma, et al., Design of a helicon plasma source for ion–ion plasma production, Fusion Engineering and Design. 117, 30-8 (2017).

 

25.          R. Geller, Electron cyclotron resonance ion sources and ECR plasmas. Routledge (2018).

 

26.          H. Conrads, M. Schmidt, Plasma generation and plasma sources, Plasma Sources Scientific Technology. 9(4), 441 (2000).

 

27.          Z.Q. Xie, C.M. Lyneis, Plasma potentials and performance of the advanced electron cyclotron resonance ion source, Review of Scientific instruments. 65(9), 2947-2952 (1994).

 

28.          Z. Xie, et al., Enhanced ECR ion source performance with an electron gun., Review of scientific instruments. 62(3), 775-778 (1991).

 

29.          Z.Q. Xie, et al., Production of highly charged ion beams from electron cyclotron resonance ion sources., Review of Scientific instruments. 69(2), 625-630 (1998).

 

30.          R. Masic, J.M. Sautter, R.J. Warnecke, A new way of producing ion beams from metals and gases using the plasma jet from a duoplasmatron, Nuclear Instruments and Methods. 71(3), 339-342 (1969).

 

31.          F.M. Bacon, Gas discharge ion source. I. Duoplasmatron, Review of Scientific Instruments. 49(4), 427-434 (1978).

 

32.          A.L. Gray, A.R. Date, Inductively coupled plasma source mass spectrometry using continuum flow ion extraction, Analyst. 108(1290), 1033-1050 (1983).

 

33.          R.S. Houk, et al., Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements, Analytical Chemistry. 52(14), 2283-2289 (1980).

 

34.          http://sam.zeloof.xyz/icp-stuff/icp-extraction/

 

35.          B.B. Sahu, J.G. Han, Comparison of plasma excitation, ionization, and energy influx in single and dual frequency capacitive discharges, Physics of Plasmas. 23(12), 123504 (2016).

 

36.          J.L. Kline, et al., RF absorption and ion heating in helicon sources, Physical Review letter. 88(19), 195002 (2002).

 

37.          J.L. Kline, et al., Ion heating in the HELIX helicon plasma source, Physics of Plasmas. 6(12), 4767-4772 (1999).

 

38.          F.F. Chen, Permanent magnet helicon source for ion propulsion, IEEE Transactions on plasma science. 36(5), 2095-2110 (2008).

 

39.          J. Del Valle, et al., Experimental investigation of momentum transfer to solid surfaces by the impact of energetic ions and atoms, In 33rd International Electric Propulsion Conference, Washington, DC, USA (2013).

 

40.          B.M. Hegelich, et al., Laser acceleration of quasi-monoenergetic MeV ion beams, Nature. 439 (7075), 441(2006).

 

41.          I.G. Brown, in: The physics and technology of ion sources, (John Wiley & Sons, 2004).

 

42.          M.M. Shamim, et al., Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation, Journal of applied physics. 70(9), 4756-4759 (1991).

 

43.          N. Sakudo, et al., Microwave ion source, Review of Scientific Instruments. 48(7), 762-766 (1977).

 

44.          S.R. LawriL, Plasma meniscus and extraction electrode studies of the ISIS H- ion Source, Review of Scientific Instruments. 81(2),  02A707 (2011).

 

45.          M.R. Jana, Design of an ion extractor system for a prototype ion source experiment for SST-1 neutral beam injector, Fusion Engineering and Design. 85(1), 122-12 (2010).

 

46.          W.B. Kunkel, Fusion.1, 103 Part B (1981).

 

47.          Sawyer C and  Norris N,  Estimation of Space Charge and Hlittance Growth, (1984).

 

48.          R. Uhlemann, J. Ongena, Variation of injected neutral beam power at constant particle energy by changing the beam target aperture of the TEXTOR neutral beam injectors., Fusion technology. 35(1), 42-53 (1999).