نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده نفت و مهندسی شیمی، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، صندوق پستی: 775-14515، تهران ـ ایران

چکیده

با توجه به نیاز روزافزون به ایزوتوپ اکسیژن-18 در مراکز پزشکی جهت تولید رادیو ایزوتوپ F18 مورد استفاده در مراکز PET، تحقیق جهت بهبود و افزایش راندمان تولید این ایزوتوپ بیش از گذشته ضروری به­ نظر می‌­رسد. در این تحقیق با استفاده از آبی که دارای غلظت %4/5 ایزوتوپ اکسیژن-18 می­‌باشد در یک برج تقطیر پایلوت و در حالت جریان برگشتی کامل دو پکینگ دیکسون پوشش­‌گذاری شده و سولزر پوشش‌­گذاری شده در دبی‌­های برگشتی مختلف مورد آزمایش قرار گرفته و مشخص گردید. الگوی تغییرات ارتفاع معادل سینی­‌های تئوری برای این دو پکینگ که از دو گونه مختلف پکینگ منظم و نامنظم هستند، با یک‌دیگر تفاوت مشهودی داشته و البته مقدار ارتفاع معادل سینی­‌های تئوری برای پکینگ سولزر پوشش­‌گذاری شده کم‌تر از دیکسون پوشش­‌گذاری می‌­باشد. بر این اساس با استفاده از پکینگ سولزر پوشش­‌گذاری شده نیاز به تعداد مراحل تعادلی کم‌تری برای رسیدن به خلوص %99 از ایزوتوپ اکسیژن-18 می‌­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the effect of reflux stream on HETP of conventional packings in oxygen-18 production via distillation

نویسندگان [English]

  • N. Dalaei
  • M. Safamirzaei
  • H. Baniasadi

Faculty of Petroleum & Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O.Box: 14515-775, Tehran – Iran

چکیده [English]

Due to the increasing need for Oxygen-18 isotope in medical centers to produce 18F radioisotopes used in positron emission tomography (PET) centers, research is today more necessary than ever to improve and increase the production efficiency of this isotope. The concentration of oxygen-18 in water is 5.4% in this study, in a pilot distillation tower and in a total reflux state, two packings of coated Dixon and coated Sulz

کلیدواژه‌ها [English]

  • Isotope of oxygen-18
  • Distillation
  • Coated packings
  • Height equivalent to a theoretical plate
1.             S. Villani, Isotope Separation, American Nuclear Society, USA, 274 (1976).
 
2.             I. Destrovsky, E.D. Hughes, and D.R. Llewelly, Fractional Distillation and Its Application in the Concentration of the Heavy Isotope of Oxygen and Hydrogen, Nature, 161, 858 (1948).
 
3.             S. Szapiro, F. Steckel, Physical Properties of Heavy-Oxygen Water: part 2- Vapour Pressure, Transactions of the Faraday Society, 63, 535 (1967).
 
4.             P.M. Mathias, D.E. Steinmeyer, W.R. Penney, Equipment for Distillation, Gas Absorption, Phase Dispersion, and Phase Separation, Section 14, McGraw-Hill, (2008).
 
5.             I. Dostrovsky, J. Gillis, D.R. Liewellyn,  The Separation of Isotopes by Fractional Distillation. Part II Determination of Parameters from Production Data. Value of the Unit Process Separation Factor for the H216O-H218O system, Journal of the Chemical Society. 0, 3517 (1952).
 
6.             J.R. Huffman, H.C. Urey, Separation of Oxygen Isotopes by a Fractionating Column, Industrial and Engineering Chemistry, 29 (5), 483 (1937).
 
7.             M.D. Krystina, et al., Deuterium enrichment using vanadium membranes, International Journal of Hydrogen Energ., 42,  24183 (2017).
 
8.             R. Ogawaa, et al., Deuterium isotope separation by combined electrolysis fuel cell, Energy, 149,  98 (2018).
 
9.             M. Aghajani , et al. Iranian Journal of Epidemiology, Iran, 13 (5), 37 (2018).
 
10.          I. Destrovsky, D.R. Liewellyn, B.H. vromen, The Separation of Isotopes by Fractional Distillation. Part I Fractionating Columns for the Enrichment of the Heavy Isotopes of Oxygen in Water, Journal of the Chemical Society, 3509 (1952).
 
11.          W. McCabe, J. Smith, P. Harriott, Unit Operations of Chemical Engineering. 7th edition, McGraw-Hill Education, 1168 (2004).
 
12.          E.E. Ludwig, Applied Process Desighn for Chemical and Petrochemical Plants, Gulf Professional Publishing, Houston, Texas, 70 (1979).
 
13.          R.E. Thompson,  E.J. Henley, J. M., Stagewise and Mass Transfer Operations, ALChE Modular Instruction, 2, 27 (1980)
 
14.          14. M.R. Fenske , Fractionation of Straight-Run Pennsylvania Gasoline, Industrial & Engineering Chemistry, 24 (5), 482 (1932).