نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 دانشکده‌ی مهندسی انرژی، دانشگاه صنعتی شریف، صندوق پستی: 1114-14565، تهران ـ ایران

3 شرکت فن‌آوری‌های پیشرفته‌ی ایران، سازمان انرژی اتمی، صندوق پستی: 55431-14399، تهران- ایران

چکیده

عملکرد یک سانتریفیوژ گازی که در صنعت غنی‌­سازی اورانیم استفاده می‌­گردد به شدت به میدان جریان گاز درون آن وابسته است. برای بررسی میدان جریان گاز، نیاز به شبیه‌­سازی کامپیوتری است. از ا‌ین­ رو در این مطالعه توانایی­‌ها و قابلیت­‌های نرم­‌افزار اپن‌­فوم برای شبیه­‌سازی جریان گاز درون روتور برای حالت جریان برگشتی کامل (بدون ورود و خروج جریان) با محرک گرمایی در حالت متقارن محوری مورد بررسی قرار گرفت. اعتبارسنجی شبیه­‌سازی با اپن­‌فوم با بررسی نتایج حل تحلیلی مدل اولاندر و حل عددی مدل هارادا و هم‌­چنین مقایسه با نتایج شبیه­‌سازی با فلوئنت انجام گرفت. نتایج شبیه­‌سازی جریان برای سانتریفیوژ مدل نشان داد که انتخاب حل‌­گر بر پایه چگالی و تعداد سلول 160×170 برای شبکه­‌بندی مناسب می­‌باشد. ارزیابی توانایی مدل نشان داد که نرم افزارا‌‌‌‌پن­‌فوم به خوبی قادر به شبیه ­سازی جریان گاز درون روتور می­‌باشد. هم‌­چنین شبیه­‌سازی توزیع عدد نادسن، وجود ناحیه مولکولی نزدیک محور دوران را تأیید کرد. با توجه به این‌­که اپن­‌فوم یک نر‌‌م­‌افزار متن‌­باز است و قابلیت حل ناحیه مولکولی و هم­‌چنین کدنویسی برای کوپل ناحیه پیوسته و مولکولی، که در نرم­‌افزار فلوئنت ممکن نیست، در آن وجود دارد، از این­ رو استفاده از آن برای شبیه­‌سازی جریان درون روتور پیشنهاد می­‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

OpenFoam application for numerical simulation of thermal drive effect on gas flow in a gas centrifuge for total reflux

نویسندگان [English]

  • V. Ghazanfari 1
  • A.K. Salehi 2
  • A.R. Keshtkar 1
  • M.H. Askari 3
  • M.M. Shadman 1

1 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

2 Department of Energy Engineering, Sharif University of Technology, P.O.Box: 14565-1114, Tehran – Iran

3 Advanced Technologies Company of Iran, AEOI, P.O.Box: 14399-55431, Tehran – Iran

چکیده [English]

The performance of a uranium gas centrifuge which is used in the uranium enrichment industry depends strongly on the gas flow field. The computer simulation is vital to examine the gas flow field. Therefore, in the present study, the capabilities of OpenFoam software for simulating the gas flow inside the rotor for total reflux thermal drive-in axisymmetric mode has been investigated. The results corresponding to the OpenFoam ssimulation have been validated with those of analytical Olander’s model, numerical solution of the Harada’s study, and simulation using Fluent. The simulation results for gas flow inside the rotor of centrifuge showed that the density-based solver was properly chosen and the number of cells, 160×170, was compatible with mesh. The numerical results show that OpenFoam software was capable to examine the gas flow inside the rotor. Also, the simulation of the distribution of Knudsen number confirms the presence of the molecular region near the axis of rotation. OpenFoam is open-source software and there is the ability to solve the molecular region as well as the coding for coupling the continuous and molecular region, the feature which does not exist in the fluent software. The use of open foam is therefore recommended to simulate gas flow inside the rotor.
 

کلیدواژه‌ها [English]

  • Gas centrifuge
  • Thermal drive
  • Circulation flow
  • Numerical simulation
  • OpenFoam
1.             Soubbaramayer, Centrifugation, Applied Physics, 183-244 (1979).
 
2.             P. Omnes, Numerical and physical comparisons of two models of a gas centrifuge, Computers & Fluids, 36, 1028-1039 (2007).
 
3.             S. Bogovalov, V. Kislov, I. Tronin, Impact of the pulsed braking force on the axial circulation in a gas centrifuge, Applied mathematics and computation, 272, 670-675 (2016).
 
4.             S. Bogovalov, V. Kislov, I. Tronin, Verification of numerical codes for modeling of the flow and isotope separation in gas centrifuges, Computers & Fluids, 86, 177-184 (2013).
 
5.             V. Borman, et al, The computer simulation of 3d gas dynamics in a gas, In Journal of Physics: Conference Series, 751 (2016).
 
6.             J. Hu, C. Ying, S. Zeng, Overall separation factor in a gas centrifuge using a purely axial flow model, Separation Science and Technology, 40, 2139-2152 (2005).
 
7.             D.R. Olander, The theory of uranium enrichment by the gas centrifuge, 8, 1-33 (1981).
 
8.             J. Brouwers, On compressible flow in a gas centrifuge and its effect on the maximum separative power., Nuclear Technology, 39 (1978).
 
9.             P. Migliorini, Modeling and simulation of gas centrifuge cascade for enhancing the efficiency of IAEA safeguards, 1-158 (2013).
 
10.          T. Kai, Basic characteristics of centrifuges, (III) analysis of fluid flow in centrifuges, Journal of nuclear science and technology, 14, 267-281 (1976).
 
11.          Soubbaramayer, J. Lahargue, A numerical model for the investigation of the flow and isotope concentration field in an ultracentrifuge, Computer method in applied mechanic and engineering, 15, 259-273 (1978).
 
12.          R.J. Ribanido, A finite-difference solution of onsager's model for flow in a gas centrifuge, Computers & Fluid, 235-252 (1984).
 
13.          V.  Borisevich, O. Morozov, O. Godisov,  Numerical simulation of bellows effect on flow and separation, Nuclear Instruments and Methods in Physics Research, 455, 487-494 (2000).
 
14.          D.  Jiang, S. Zeng, CFD simulation of 3D flowfield in a gas centrifuge, International Conference on Nuclear Engineering, July, Miami, Florida, USA, 17-20 (2006).
 
15.          "https://www.openfoam.com/documentation/user-guide/," [Online].
 
16.          C. White, M. Borg, T. Scanlon, DsmcFoam+: an openfoam based direct simulation monte carlo solver, Computer Physics Communications, 224, 22-43 (2018).
 
17.          S. Chun, S. Fengxian, X. Xinlin, Analysis on capabilities of density-based solvers within openfoam to distinguish aerothermal variables in diffusion boundary layer, Chinese Journal of Aeronautics, 26, 1370-1379 (2013).
 
18.          K. Farber, et al, Development and validation of a coupled navier–stokes/DSMC simulation for rarefied gas flow in the production process for OLEDs, Applied Mathematics and Computation, 272, 648-656 (2016).
 
19.          H.G. Wood, J.B. Morton, Onsager's pancake approximation for the fluid dynamics of a gas centrifuge, Fluid Mech., 101, 1-31 (1980).
 
20.          I. Harada, Computation of strongly compressible rotating flows, Journal of Computational Physics, 38, 335-356 (1980).
 
21.          C. Ying, H.G. Wood, Solution of the diffusion equations in a gas centrifuge for separation of multicomponent mixtures, Separation Science and Technology, 31 (1996).
 
22.          F.L. Torre, et al, Evaluation of micronozzle performance through DSMC, navier-stokes and coupled DSMC/navier-stokes approaches, Springer-Verlag Berlin Heidelberg, 675-684 (2009).
 
23.          K. Stephani, D. Goldstein, P. Varghese, A non-equilibrium surface reservoir approach for hybrid DSMC/navier–stokes particle generation, Journal of Computational Physics, 232, 468-481 (2013).
 
24.          M. Darbandi, E. Roohi, Applying a hybrid DSMC/navier–stokes frame to explore the effect of splitter catalyst plates in micro/ nanopropulsion systems, Sensors and Actuators A: Physical, 189, 409-419 (2013).
 
25.          K. Farber, et al, Development and validation of a coupled navier–stokes/DSMC simulation for rarefied gas flow in the production processfor OLEDs, Applied Mathematics and Computation, 272, 648-656 (2016).
 
26.          D. Jiang, S. Zeng, 3D numerical study of a feed jet in a rotating flow-field, In Journal of Physics: Conference Series, 751, (2016).
 
27.          R. Petrova, Finite volume method – powerful means of engineering design, Croatia: Romana Vukelic, (2012).