اثر ایزوتوپی استرانسیم در سیستم استخراجی جامد- مایع با استفاده از جاذب پلی‌مری عامل شده با کریپتاند [2.2.2]

نوع مقاله: مقاله فنی

نویسنده

پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

10.24200/nst.2020.1134

چکیده

استفاده از لیگاندهای حلقوی یکی از روش‌­های نسبتاً جدید جداسازی­ ایزوتوپی می‌­باشد. اترهای تاجی و کریپتاندها، بیش‌ترین کاربرد را در این ­گونه جداسازی‌­ها داشته‌­اند. کریپتاند [2.2.2] یکی از ترکیبات خانواده کریپتاندها می‌­باشد که برای تشکیل کمپلکس انتخابی با برخی کاتیون‌­ها به کار رفته است. یکی از قابلیت‌­های کریپتاندها تفاوت سرعت و پایداری پیوند آن‌ها با ایزوتوپهای مختلف یک عنصر می­‌باشد. این پدیده که به اثر ایزوتوپی معروف است سبب توانایی این ترکیبات برای جداسازی ایزوتوپ‌­ها می‌­شود. در این پروژه اثر ایزوتوپی استرانسیم در سیستم استخراجی جامد- مایع با استفاده از جاذب پلی‌مری مریفیلد عامل­‌دار شده با کریپتاند [2.2.2] مورد بررسی قرار گرفت. اثر پارامترهای مؤثر بر فاکتور جداسازی شامل نوع آنیون، غلظت استرانسیم، زمان تعادل، زمان بازیابی، pH و دما مورد بررسی و بهینه‌­سازی قرار گرفت. نتایج نشان دادند فاکتور جداسازی با جرم ایزوتوپ رابطه عکس داشته و برای ایزوتوپ‌­های سبک­‌تر، این فاکتور بیش‌تر می‌­باشد. تحت شرایط بهینه، فاکتور جداسازی برای ایزوتوپ‌­های Sr88Sr/84 ،Sr88Sr/86 وSr88Sr/87 به ترتیب 028/1، 017/1 و 014/1 به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Strontium isotope effect on Solid-Liquid extraction system using a polymer resin with 2.2.2-Cryptand anchor groups

نویسنده [English]

  • E. Zolfonoun
Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran
چکیده [English]

The chemical isotope exchange with macrocyclic polyethers is one of the relatively new methods for isotope separation. These separations are based on the phenomenon of isotope effect, in which the kinetic and the stability of the complex formation between the ligand and the isotopes of an element are different. In particular, crown ethers and cryptands, with high affinity and size selectivity for some metal ions, have been investigated for isotope separation in various extraction processes. In the present study, the isotope effect in a solid-liquid extraction of strontium with Merrifield resin having 2.2.2-Cryptand anchor groups was investigated. The effects of various experimental parameters such as pH, concentration of strontium, type of anion, equilibrium time, and temperature on the separation factor of strontium isotopes were studied and discussed. The results showed that the separation factor had an inverse correlation with the isotope mass and for the lighter isotopes this factor was greater. Under the optimum conditions, the separation factors for 84Sr/88Sr, 86Sr/88Sr, and 87Sr/88Sr were 1.028, 1.017, and 1.014, respectively.

کلیدواژه‌ها [English]

  • Strontium
  • Isotope effect
  • 2.2.2-Cryptand
  • Polymer resins
1.             P. Desmoulins, Stable Isotopes, Application-Production, Gif-Sur-Yvette, France, (1994).

 

2.             J. Míková, P. DENKOVá, Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples, J. Geosci. 52, 221–226 (2007).

 

3.             I.A. Semiokhin, Chemical methods of stable isotope separation, J. Radioanal. Nucl. Chem. 205, 201–213 (1996).

 

4.             C.J. Pedersen, Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89, 7017–7036 (1967).

 

5.             C.J. Pedersen, The discovery of crown ethers, Science, 241, 536–540 (1988).

 

6.             J.M. Lehn, Supramolecular chemistry: Concepts and perspectives, Wiley-VCH Weinheim, (1995).

 

7.             B. Dietrich, Cryptands. In Gokel, G. W. Comprehensive Supramolecular Chemistry 1, Oxford, Elsevier. 153–211 (1996).

 

8.             D. Landini, et al., Lipophilic [2.2.2] cryptands as phase-transfer catalysts. Activation and nucleophilicity of anions in aqueous-organic thirteen-phase systems and in organic solvents of low polarity, J. Am. Chem. Soc., 101, 2526-2530 (1979).

 

9.             P. Krurnbiegel, Isotopie effekte, Akademie-Verlag, Berlin, (1970).

10.          H. Simon, D. Palm, Isotopeneffekte in der organischen Chemie und Biochemie, Angew. Chem. 78, 993–1007 (1966).

 

11.          B.E. Jepson, R.J. DeWitt, Separation of calcium isotopes with macrocyclic polyether calcium complexes,  Inorg. Nucl. Chem., 38, 1175-1177 (1976).

 

12.          H. Yande, L. Wenzong, G. Shuqin, Study of the isotope separation of uranium by extraction method with crown ether, Chin. J. Nucl. Sci. Eng., 13, 58–66 (1993).

 

13.          W. Xiaoning, L. Wenzong, W. Dexi, Isotope separation of cerium and uranium with crown ethers, J. Nucl. Radiochem., 8, 118-122 (1986). 

 

14.          A. Knochet, R.D. Wilken, Isotopie effekte bei der Bildung von Natrium kryptaten, J. Radioanal. Chem., 32, 345–356 (1976). 

 

15.          S. Kopolow, T.E. Hogen Esch, J. Smid, Poly (vinyl macrocyclic polyethers). Synthesis and cation binding properties, Macromolecules, 6, 133–142 (1973).

 

16.          M.G. Djamali, P. Burba, K.H. Lieser, Synthesis und Eigenschaften eines Cellulose uastauschers mit Diaminodibenzo-18-Krone-6 als Ankergruppe, Angew. Makromol. Chem., 92, 145-154 (1980).

 

17.          K. Nishizawa, et al., Strontium isotope effect in liquid-liquid extraction of strontium chloride using a crown ether, J. Nucl. Sci. Technol., 32, 1230–1235 (1995).

 

18.          T. Oi, et al., Fractionation of strontium isotopes in cation exchange chromatography, Sep. Sci. Technol., 27, 631–643 (1992).

 

19.          Y. Ban, M. Nomura, Y. Fujii, Isotope effects of strontium in crown ether chromatography, Sep. Sci. Technol., 36, 2165 –2180 (2001).