نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک، دانشگاه پیام نور، صندوق پستی: 4697-19395، تهران- ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

امروزه استفاده از رادیونوکلئیدهای رنیوم-186 و 188 در تولید رادیوداروهای مختلف رشد چشم­گیری داشته است. این دو رادیونوکلئید دارای ویژگی‌­های مناسبی نظیر گسیل ذارات بتا با برد و انرژی مناسب و تابش پرتوی گامای مناسب برای تصویربرداری و ارزیابی توزیع زیستی جهت درمان سرطان هستند. با توجه به انرژی و برد این رادیونوکلئید­ها، رنیوم-186 با برد کم برای درمان تومور­های کوچک و رنیوم-188 با برد بیش‌تر در نابودی تومور­های بزرگ مناسب هستند. در این پژوهش فرایند تولید هم‌­زمان این دو رادیونوکلئید از طریق پرتودهی رنیوم طبیعی برای تولید رادیوداروی ترکیبی جهت درمان تومور­های با اندازه­‌های مختلف مورد بررسی قرار گرفته است. در مطالعه‌­ی حاضر، پرتودهی mg 1 رنیوم طبیعی در شار نوترونی 1.s2-cm 1013×3 به مدت 7 روز مورد ارزیابی قرار گرفت و اکتیویته‌­ی محصولات اصلی محاسبه گردید. از آن­‌جایی که وجود ناخالصی‌ها دز نامطلوب و اضافی به بیمار تحول می‌دهد، حضور و میزان اکتیویته‌­ی این رادیونوکلئیدها مورد بررسی قرار گرفته است. نتایج نشان می‌­دهند که از طریق پرتودهی رنیوم طبیعی، رادیونوکلئیدهای رنیوم-186 و 188 را می‌­توان به ­طور هم‌­زمان با میزان اکتیویته‌­ی مناسب جهت تولید رادیوداروی ترکیبی تولید کرد. هم‌چنین محاسبات نظری نشان می‌­دهد میزان ناخالصی‌­های تولیدی در مقایسه با محصولات اصلی، بسیار ناچیز هستند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of radionuclidic purity of Re-186 and Re-188 produced by irradiation of natural Rhenium

نویسندگان [English]

  • Z. Pourhabib 1
  • H. Ranjbar 2
  • A. Bahrami Samani 2
  • A.A. Shokri 1

1 Department of Physics, Payame Noor University, P.O. Box: 19395-4697, Tehran-Iran

2 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research InstiNuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran – Irantute, AEOI,

چکیده [English]

These days, the use of Rhenium 186 and 188 radionuclides in the production of various radiopharmaceuticals has grown considerably. These two radionuclides have good features such as emitting beta particles with appropriate range and energy, and gamma rays for imaging and evaluating biological distribution in cancer treatment. Regarding the energy and range of these radionuclides, Rhenium 186 with small range is suitable for treating small tumors; and Rhenium 188 with greater range is appropriate to destroy large tumors. In this study, the simultaneous production of these two radionuclides by natural rhenium irradiation for the production of a combined radiopharmaceutical, to treat tumors with various sizes has been investigated. For the purpose of this study, the irradiation of 1 mg of natural rhenium in a neutron flux of 3×1013 cm-2s-1 for 7 days was evaluated and the activity of the main products was calculated. Since the presence of impurities delivers an unwanted and excess dose to the patient, the presence and activity level of these radionuclides have also been studied. The results of the study showed that by the irradiation of natural rhenium, Rhenium 186 and 188 radionuclides can be produced simultaneously with the appropriate activity level for using the combination of both radionuclides. Also, theoretical calculations showed that the amount of produced impurities compared to the original products is negligible.

کلیدواژه‌ها [English]

  • Radioisotope production
  • Rhenium186
  • Rhenium188
  • Radionuclidic purity
1.             J.F. Eary, W. Brenner, eds, Nuclear medicine therapy. CRC Press, (2007).
 
2. A. Owunwanne, M. Patel, S. Sadek. In: The Handbook of Radiopharmaceuticals, (Springer, Boston, MA), 3-15 (1995).
 
3. K. Hashimoto, K. Yoshihara, In: Rhenium complexes labeled with 186,188Re for nuclear medicine, (Springer, Berlin, Heidelberg),  275-291 (1996).
 
4. R.P. Baum, ed. Therapeutic nuclear medicine. (Springer, 2014).
 
5. J.R. Dilworth, P.S. Donnelly, In: Metallotherapeutic Drugs and Metal‐Based Diagnostic Agents: The Use of Metals in Medicine, (John Wiley & Sons) 463-487 (2005).
 
6. M.R.A. Pillai, Metallic radionuclides and therapeutic radiopharmaceuticals. Warszawa, Poland: Institute of Nuclear Chemistry and Technology, (2010).
 
7. Z. Dvoráková, Doctoral dissertation, Technische Universität München (2007).
 
8. H. Ranjbar, et al. Dosimetric evaluation of 153Sm-EDTMP, 177Lu-EDTMP and 166Ho-EDTMP for systemic radiation therapy: Influence of type and energy of radiation and half-life of radionuclides, Radiation Physics and Chemistry. 108, 60 (2015).
 
9.             I. Alekseev, V. Lazarev, Cyclotron production and radiochemical isolation of the therapeutical radionuclide 186Re. Radiochemistry, 48(5), 497 (2006).
 
10. A. Baulin, V. Golovkov, A. Bolshakov, Obtaining of 186Re for Nuclear Medicine Using 13 MeV Deuterons, Key Engineering Materials, 683, 500 (2016).
 
11. N.S. Ishioka, et al., Excitation functions of rhenium isotopes on the natW (d,xn) reactions and production of No-carrier-added 186Re, Journal of Nuclear Science and Technology, 39(2) 1334 (2002).
 
12. F. Tárkányi, et al., New measurement and evaluation of the excitation function of the 186W (p,n) nuclear reaction for production of the therapeutic radioisotope 186Re, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 264(2), 389 (2007).
 
13. L. Solin, et al. In Proc. 5th Int. Conf. on Isotopes, Cyclotron yields of rhenium-186, Brussels, Belgium, April, 25-29 (2005).
 
14. F. Tárkányi, et al., Excitation functions of deuteron induced nuclear reactions on natural tungsten up to 50 MeV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 211(3), 319 (2003).
 
15. F. Tárkányi, et al., Excitation functions of proton induced nuclear reactions on natural tungsten upto 34 MeV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 252(2), 160 (2006).
 
16. X. Zhang, et al., Production of no-carrier-added 186Re via deuteron induced reactions on isotopically enriched 186W, Applied Radiation and Isotopes. 54(1), 89 (2001).
 
17. Z. Zhu, et al., An improved Re/W separation protocol for preparation of carrier-free 186Re. Journal of radioanalytical and nuclear chemistry, 221(2), 199 (1997).
 
18. E. lller, et al., Studies of gel metal-oxide composite samples as filling materials for W-188/Re-188 generator column, Journal of radioanalytical and nuclear chemistry, 281(1), 83(2009).
 
19.          M. Konior, E. Iller, Classic radionuclide 188W/188Re generator (experiments, design and construction), Modern Chemistry & Applications, 2(4), 1 (2014).
 
20.          S. Mirzadeh, F. Knapp, A. Callahan, In: Nuclear Data for Science and Technology, Springer, Forschungszentrum Jülich, Fed. Rep. of Germany, (1991).
 
21. Ra. Pillai, A. Dash, F. Knapp, Rhenium-188: availability from the 188W/188Re generator and status of current applications, Current radiopharmaceuticals, 5(3), 228 (2012).
 
22. N. Botros, et al., Comparative studies on the development of a 188W-188Re generator, Isotopenpraxis Isotopes in Environmental and Health Studies, 22(10), 368 (1986).
 
23. A. Callahan, D. Rice, F. Knapp Jr, Rhenium-188 for therapeutic applications from an alumina-based tungsten-188/rhenium-188 radionuclide generator, Nuc Compact, 20(1), 3 (1989).
 
24. F. Knapp Jr, et al., Processing of reactor-produced 188W for fabrication of clinical scale alumina-based 188W/188Re generators, Applied Radiation and Isotopes, 45(12), 1123 (1994).
 
25. R. Chakravarty, et al., Nanocrystalline zirconia: A novel sorbent forthe preparation of 188W/188Re generator, Applied Radiation and Isotopes, 68(2), 229 (2010).
 
26. A.Y. Tsivadze, et al., Extraction centrifugal generator of 188Re and radiopharmaceuticals based on it for radionuclide therapy. Radiochemistry. 58(5), 513 (2016).
 
27. R. Schwarzbach, et al., Is the Production of 1^ 8^ 6^ Re with Cyclotron Irradiations an Alternative to Neutron Activation in a Reactor?, Journal of  Labelled Compounds and Radiopharmaceuticals, 37, 816 (1995).
 
28. J. Bērzinš, et al. Levels of 186Re populated in thermal neutron capture reaction, EPJ Web of Conferences. 93, 1045 (2015).
 
29. Djokić, D., et al, Development, Preparation and Quality Assurance of Radiopharmaceuticals Based on 188Re and 90Y for Radionuclide Therapy: In House Production of Radioisotopes at Vinča Instute of Nuclear Sciences. Chapter 10, in Yttrium-90 and Rhenium-188 Radiopharmaceuticals for Radionuclide Therapy. (2015).
 
30. J. Glatz, Untersuchung der Anregungen von186Re nach der (n,γ)-Reaktion. Z. Physik 265, 335 (1973). https://doi.org/10.1007/BF01391609.
 
31. D.A. Matters, PhD dissertation, Air Force Institute of Technology, (2016).
 
32. V. Tan, et al., Capture cross section measurementsof 185,187Re with filtered neutron beams at the Dalat Research Reactor, Journal of the Korean Physical Society, 59(2), 1757 (2011).
 
33.          S. Banerjee, et al., A novel [186/188Re]-labelled porphyrin for targeted radiotherapy, Nuclear medicine communications, 22(10), 1101 (2001).
 
34. U.O. Häfeli, et al., Hepatic tumor radioembolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres, International Journal of Radiation Oncology Biology Physics. 44(1), 189 (1999).
 
35. K. Kothari, et al., Preparation, stability studies and pharmacological behavior of [186Re] Re–HEDP, Applied radiation and isotopes. 51(1), 51 (1999).
 
36. K. Kothari, et al., Kidney uptake of 186/188R(V)‐DMSA is significantly reduced whenthe reducing agent is changed from stannous ion to metabisulfite, Journal of Labelled Compounds and Radiopharmaceuticals. 45(8), 675 (2002).
 
37. E. Verdera, et al., Rhenium-188-HEDP-kit formulation and quality control, Radiochimica Acta, 79(2), 113 (1997).
 
38 Z. Yang, et al., Preparation of 188Re-HEDP lyophilized kit for instant bone metastases therapy, Nuclear Science and Techniques, 25(6), 1 (2014).
 
39.          M.J. Bell, https://inis.iaea.org/collection/ NCLCollectionStore/_Public/04/082/4082786.pdf?r=1.