نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده علوم، پژوهشگاه ﭘلی‌مر و پتروشیمی ایران، صندوق پستی: 1497713115، تهران - ایران

2 گروه برق، دانشکده فنی شهید مطهری تفت، دانشگاه فنی و حرفه‌ای، صندوق پستی: 8916997663، تفت - ایران

3 دانشکده شیمی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، صندوق پستی: ۱۴۷۷۸۹۳۸۵۵، تهران - ایران

4 دانشکده فیزیک، دانشگاه پیام نور تهران، صندوق پستی: 1455643183، تهران - ایران

5 دانشکده فیزیک، دانشگاه کاشان، صندوق پستی: ۸۷۳۱۷۵۳۱۵۳، کاشان – ایران

چکیده

در عصر فن­‌آوری، حفاظت در برابر منابع بی­‌شمار پرتوهای گامای موجود در محیط همواره یک دغدغه به شمار می­‌رود. در سال­‌های گذشته روش­‌های گوناگونی جهت جذب پرتوهای گاما گسترش یافته که به ­طور کلی بر استفاده از حفاظ­‌های فلزی و سنگین بر پایه سرب استوار است. سرب به ­دلیل هزینه زیاد، سمیت و سنگین بودن، حفاظ مناسبی محسوب نمی­‌شود. هدف از انجام این پژوهش، تهیه کامپوزیت­‌های سبک با بالاترین قدرت حفاظتی بر پایه لاستیک SBR ‌‌می­باشد. بنابراین فرمولاسیون­های مختلف جهت تهیه لاستیک­ ضدپرتو در دستور کار قرار گرفت. برای دست یابی  به این هدف، از خاک­رس مونت­موریلونیت (MMT) و اکسیدهای فلزی مختلف از قبیل اکسید آهن (3O2Fe)، اکسید روی (ZnO)، اکسید مولیبدن (3MoO) و اکسید تیتانیم (2TiO) به­ عنوان پرکننده استفاده شد. خواص حفاظتی کامپوزیت­‌های تهیه شده با چشمه پرتوزای یوروپیم (Eu152) در محدوده انرژی 122 تا keV 964 مورد ارزیابی قرار گرفت. برای بررسی خواص حفاظتی (ضریب ­تضعیف ­خطی، میزان جذب، ضخامت نیم ­لایه و ضخامت یک­ دهم لایه) و دیگر خواص کامپوزیت­‌های لاستیکی تهیه شده از آزمون‌­های کشش، سختی، TGA و SEM استفاده شد. از بین نمونه‌­های تهیه شده، نمونه‌­های حاوی 3MoOو MMT با میزان جذب 99%، بهترین عملکرد را برای جذب پرتوها از خود نشان دادند.

کلیدواژه‌ها

عنوان مقاله [English]

Preparation of flexible composites based on SBR as gamma shielding

نویسندگان [English]

  • A. Mouraki 1
  • M. Ghasri 1
  • Gh. Mouraki 2
  • P. E-Kasaei 3
  • B. Ahadi 4
  • A. Rahmati 5

1 Department of Polymer Science, Iran Polymer & Petrochemical Institute, P.O.Box: 1497713115, Tehran - Iran

2 Department of Electrical Engineering, Taft Shahid Motahari, Technical and Vocational University, P.O.Box: 8916997663, Taft - Iran

3 Department of Chemistry, Tehran Science and Research Branch, Islamic Azad University, 1477893855, Tehran - Iran

4 Department of Physics, Payame Noor University of Tehran, P.O.Box: 1455643183, Tehran - Iran

5 Department of Physics, Kashan University, P.O.Box: 8731753153, Kashan - Iran

چکیده [English]

Today, humans are surrounded by countless sources of gamma radiation, and therefore, radiation shielding has always been a big concern. Different methods which are generally based on the use of lead-based metal and heavy shielding materials have been developed to absorb this radiation in recent years. Lead is not a good shield due to its high cost, toxicity and weight. The purpose of this study is to produce lightweight composites with the highest protective strength based on SBR rubber. Therefore, in order to produce anti-radiation rubber, various formulations were used. For this purpose, montmorillonite (MMT) Clay and various metal oxides such as Iron Oxide (Fe2O3), Zink Oxide (ZnO), Molybdenum Oxide (MoO3), and Titanium Oxide (TiO2) were used as filler. Then, the shielding properties of the composites made with Europium (152Eu) radioactive source in the energy range of 122 to 964 keV were investigated. The shielding properties of the composites including linear attenuation coefficient, absorption rate, half-value layer (HVL), and tenth-value layer (TVL), and other properties of rubber composites were studied by different analysis including mechanical strength, hardness, TGA, SEM. Among the samples tested, the sample containing MoO3 and MMT was the best material for absorbing these rays with an absorption rate of about 99%.

کلیدواژه‌ها [English]

  • Gamma ray shielding
  • Metallic oxides
  • Montmorillonite
  • Composite
  • Styrene butadiene rubber

1. P. Atashi, et al. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application, J. Mater. Sci.: Mater. Electron., 29, 12306 (2018).

 

2.             N. Tsoulfanidis, S. Landsberger, Measurement and Detection of Radiation, 4th edn. (CRC Press, Hoboken, 2015)

 

3.             E.R. Atta, K. M. Zakaria, A. M. Madbouly, Study on Polymer Clay Layered Nanocomposites As Shielding Materials for Ionizing Radiation, Int. J. Recent Sci. Res., 6, 4263 (2015).

 

4.             S. P. Shirmardi, et al. High Energetic Gamma Attenuating from a Neutron Field Using a Lead Free Reinforced Composite, J. Nucl. Sci. Technol., 37, 23 (2016).

 

5.             Y. Yang, M. C. Gupta, K. L. Dudley, Studies on electromagnetic interference shielding characteristics of metal nanoparticle- and carbon nanostructure-filled polymer composites in the Ku-band frequency, Micro Nano Lett., 2, 85 (2007).

 

6.             A. Hashim, I. R. Agool, K. J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications, J. Mater. Sci. Mater. Electron., 29, 10369 (2018).

 

7.             S.M. Badawy, A.A. Abd El-Latif, Synthesis and characterizations of magnetite nanocomposite films for radiation shielding, Polym. Compos., 38, 974 (2017).

 

8.             M. R. Ambika, et al. Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields, Radiat. Phys. Chem., 130, 351 (2017).

 

9.             N. Das, et al. Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites, Compos. Part A Appl. Sci. Manuf., 31, 1069 (2000).

 

10.          K. Yue, et al. A new lead-free radiation shieliding material for radiotherapy, Radiat. Prot. Dosim., 133, 256 (2009).

 

11.          M. Salimi, N. Ghal-Eh, E.A. Amirabadi, Characterization of a new shielding rubber for use in neutron–gamma mixed fields, Nucl. Sci. Technol., 29, 36 (2018).

 

12.          M. Dejangah, et al. X-ray attenuation and mechanical properties of tungsten-silicone rubber nanocomposites, Mater. Res. Express, 6, 85045 (2019).

 

13.          A.K. Mheemeed, H.I. Hasan, F.M. Al-Jomaily, Gamma-ray absorption using rubber—lead mixtures as radiation protection shields, J. Radioanal. Nucl. Chem., 291, 653 (2012).

 

14.          W. Huang, et al. Preparation and characterization of γ-ray radiation shielding PbWO4/EPDM composite, J. Radioanal. Nucl. Chem., 309, 1097 (2016).

 

15. T.D. Sreeja, S.K.N. Kutty, Cure Characteristics and Mechanical Properties of Natural Rubber- Short Nylon Fiber Composites, J. Elastom Plast., 33, 225 (2001).

 

16.          N. Noriman, et al. Curing Characteristics and Mechanical and Morphological Properties of SBR/vNBR and SBR/rNBR Blends, Polym. Plast. Technol. Eng., 47, 1016 (2008).

 

17.          A. Chavooshi, et al. Effect of Nanoclay and Microwave Thermal Treatment on Mechanical Properties of MDF Dust-PP Nanocomposite, Iran. J. Polym. Sci. Technol., 25, 323 (2012).

 

18.          H. Zhang, et al. Study on flammability of montmorillonite/SBR nanocomposites, J. Appl. Polym. Sci., 97, 844 (2005).

 

19.          W. Kim, et al. Styrene butadiene rubber-clay nanocomposites using a latex method: morphology and mechanical properties, Compos. Interfaces, 14, 409 (2007).

 

20.          M. Tavakoli, et al. NR/SBR/organoclay nanocomposites: Effects of molecular interactions upon the clay microstructure and mechano-dynamic properties, J. Appl. Polym. Sci., 123, 1853 (2012).

 

21.          R. M. Radwan, R. M. Mohamed, M.M. Abdel-Aziz, Electrical Properties of Irradiated Rubber-Clay Composites Based on NBR and SBR, Adv. Polym. Technol., 32, E198 (2013).

 

22.          F. M. Uhl, et al. Polymer Films Possessing Nanoreinforcements via Organically Modified Layered Silicate, Chem. Mater., 16, 1135 (2004).

 

23.          S. Obaid, D. Gaikwad, P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem., 144, 356 (2018).

 

24.          S. M. Ivanov, et al. Photons transport through ultra-high molecular weight polyethylene based composite containing tungsten and boron carbide fillers, J. Alloys Compd., 586, S455 (2014).

 

25.          L. V. Dubey, et al. Synthesis of Flexible Polymeric Shielding Materials for Soft Gamma Rays: Physicomechanical and Attenuation Characteristics of Radiation Crosslinked Polydimethylsiloxane/ Bi2O3 Composites, Polym. Compos., 16, 101 (2014).

 

26.          J. Kim, et al. Nano-W dispersed gamma radiation shielding materials, Adv. Eng. Mater., 16, 1083 (2014).

 

27.          S. Chen, M. Bourham, A. Rabiei, Novel light-weight materials for shielding gamma ray, Radiat. Phys. Chem., 96, 27 (2014).

 

28.          V. Harish, et al. Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications, J. Appl. Polym. Sci., 112, 1503 (2009).

 

29.          M. Saiyad, N. Devashrayee, R. Mevada, Study the Effect of Dispersion of Filler in Polymer Composite for Radiation Shielding, Polym. Compos., 35, 1263 (2014).

 

30.          K. Okuno, Neutron shielding material based on colemanite and epoxy resin, Radiat. Prot. Dosim., 115, 258 (2005).

 

31.          H. Chai, et al. Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth(III) oxide, J. Appl. Polym. Sci., 133, 43012 (2016).

 

32.          J. Kim, S. Lee, C. Kim, Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band, Compos. Sci. Technol., 68, 2909 (2008).

 

33.          H. Gargama, A. Thakur, S. Chaturvedi, Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications, J. Alloys Compd., 654, 209 (2016).

 

34.          Y. Liu, et al. EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe, Compos. Part B Eng., 63, 34 (2014).

 

35.          S. Vinayasree, et al. A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications, Compos. Sci. Technol., 82, 69 (2013).

 

36.          K. Yue, et al. A new lead-free radiation shielding material for radiotherapy, Radiat. Prot. Dosim., 133, 256 (2009).