نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

در این مقاله­، به ­عنوان گامی در جهت توسعه‌­ی فن‌­آوری غشای مایع برای بازیابی توریم از محلول‌­های آبی رقیق،­ ­رفتار انتقالی توریم (IV) از یک فاز ­خوراک حاوی M 0001/0 هیدروکلریک اسید به یک فاز بازیابی حاوی M 5/1 سولفوریک اسید در یک غشای مایع جریان پیوسته‌­ی حاوی M 2/0 دی (2- اتیل هگزیل) فسفریک اسید به عنوان حامل مورد بررسی قرار می‌­گیرد. ارزیابی فرایند انتقال، از طریق تعیین پارامترهای سینتیکی- ضرایب­ انتقال جرم و جریان ورودی و خروجی درون و بیرون غشا به انجام رسید. آزمایش­‌های انتقال، توانایی غشای مایع جریان پیوسته برای بازیابی توریم در آب خالص را تأیید نمود. علاوه بر این، آزمایش­‌های انتقال نشان می‌­دهند مراحل استخراج و استخراج معکوس به طور هم­‌زمان و پیوسته انجام شود. نتایج نشان دادند که با افزایش نرخ جریان فازهای غشا و گیرنده، بازده انتقال یون­‌های توریم افزایش می­‌یابد در حالی که نرخ جریان خوراک تأثیر معنی‌­داری بر فرایند انتقال توریم (IV) ندارد. در نرخ جریان‌­های بیش از 1-mL.min 300 برای فاز بازیابی، مقاومت انتقال جرم در این فاز به کم‌­ترین مقدار خود کاهش می‌­یابد.­ بررسی‌­های سینتیک انتقال توریم نشان داد که استخراج یون‌های فلزی از محلول خوراک نسبت به استخراج معکوس آن‌­ها در فاز آبی بازیابی سینتیک سریع‌­تری را ارایه می‌­دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Transport behavior of thorium(IV) in a continuous-flow liquid membrane containing Di-(2-ethylhexyl) phosphonic acid

نویسندگان [English]

  • S.A. Milani
  • F. Zahakifar

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran – Iran

چکیده [English]

As a step towards the development of liquid membrane technology for the recovery of thorium from dilute solutions, the article investigates transport behavior of Th(IV)‏ from a feed (solution) phase containing 0.0001M hydrochloric acid (HCl) into a recovery phase containing 1.5M sulfuric acid (H2SO4) in a continuous flow liquid membrane (CFLM) containing 0.2 M Di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the ion carrier. The assessment of the transport process was performed by determining the kinetic parameters—mass transfer coefficient, and entrance and exit flow in and out of the chloroform membrane. The ability of the CFLM for thorium(IV) recovery from aqueous solutions was confirmed with transport experiments. In addition, transport experiments also show the extraction and back-extraction steps to proceed simultaneously and in a continuous fashion. The obtained results showed that with an increasing flow rate of the membrane and recovery phases the transport rate of thorium ions will increase, while feed flow rate had no significant effect on the transport of thorium(IV). At the flow rates higher than 300 mL min-1 for the recovery phase, the mass transfer resistance in this phase decreases to its lowest value. According to the kinetic studies, extraction of metal ions from the feed solution provides faster kinetics than their back extraction into the recovery aqueous phase.

کلیدواژه‌ها [English]

  • Continuous-flow liquid membrane
  • Transport of thorium(IV)‏
  • Di-(-2-ethylhexyl) phosphoric acid
  • Kinetic

1.             L. Boyadzhiev, Z. Lazarova, In: Membrane Separations Technology: Principles and Applications, Noble, R.D.; Stern, S.A., eds.; Elsevier Science B.V. 283 (1995).

 

2. R.A. Bartsch, et al., In: Chemical Separations with Liquid Membranes, Bartsch, R.A.; Way, J.D., eds.; ACS symposium series number 642, ACS, Washington, DC, 1 (1996).

 

3. A.M. Sastre, et al., Improved techniques in liquid membrane separations: An overview. Sep. Purif. Methods, 27, 213 (1998).

 

4. P.K. Mohapatra, V.K. Manchanda, Liquid membrane based separations of actinides and fission products. Indian J. Chem., 42A, 2925 (2003).

 

5. D.J. Kathios, et al., A preliminary evaluation of microporous hollow fiber membrane modules for the liquid-liquid extraction of actinides. J. Membr. Sci., 97, 251 (1994).

 

6. A. Geist, et al., ‌Application of novel extractants for actinide (III)=lanthanide (III) separation in hollow-fibre modules, Membr. Technol., 5, 5 (2003).

 

7. A. Geist, M. Weigl, K. Gompper, Minor actinide partitioning by liquid-liquid extraction: Using a synergistic mixture of bis(chlorophenyl)-dithiophosphinic acid and TOPO in a hollow fiber module for americium(II)-lanthanides (III) separation. Sep. Sci. Technol., 37, 3369 (2002).

 

8. A. Bhattacharyya, et al., Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex-301 as the carrier. J. Membr. Sci., 312, 1 (2008).

 

9. L. Boyadzhiev, et al., Membrane Separation Technology, Principles and Applications, Elsevier Science, (1994).

 

10. R.D. Noble, J.D. Way (Eds.), Liquid Membranes, Theory and Applications, ACS Press, Washington, (1987).

 

11. T. Araki, H. Tsukube (Eds.), Liquid Membranes; Chemical Applications, CRC Press, Boca Raton, FL, (1990).

 

12. X.-J. Yand, A.G. Fane, Sep. Purif. Technol. 34, 1873 (1999).

 

13. D. Nanda, et al., Fcilitated transport of Th(IV) across bulk liquid membrane by di(2-ethylhexyl) phosphoric acid, Separation Science and Technology, 36, 2489 (2001).

 

14. A.K. Dinkar, et al., Carrier facilitated transport of thorium from HCl medium using Cyanex 923 in n-dodecane containing supported liquid membrane, Journal of Radioanalytical and Nuclear Chemistry,  298(1), 707 (2013).

 

15. V.K. Jain, et al., Selective Extraction, Preconcentration and Transport Studies of Thorium(IV) Using Octa-Functionalized Calix[4]resorcinarene-Hydroxamic Acid, Analyt. Sci. 21, 129 (2005).

 

16. S.H. Yin, et al., Study on the aqueous solution behavior and extraction mechanism of Nd(III) in the presence of the complexing agent lactic acid with di-(2-ethylhexyl) phosphoric acid, RSC Advances, 5, 64550 (2015).

 

17. B. Dalai, et al., Physico-chemical properties of di-(2-ethylhexyl) phosphoric acid with apolar solvents from ultrasonic studies, Physics and Chemistry of Liquids: An International Journal, 50(2), 242 (2012).

 

18. M.S. Gasser, E. Zaki, H.F. Aly, Effect of an electric field on the transport of Th(IV) in the presence of Eu(III) and U(VI) through supported liquid membrane containing di‐2‐ethylhexylphosphoric acid, Journal of Chemical Technology & Biotechnology, 76(12), 1267 (2017).

 

19. S. Panja, et al., Transport of Thorium(IV) Across a Supported Liquid Membrane Containing N,N,N0, N0 -Tetraoctyl3-oxapentanediamide (TODGA) as the Extractant, Separation Science and Technology, 45, 1112 (2010).

 

20. P. Ura, et al., Feasibility Study on the Separation of Uranium and Thorium by a Hollow Fiber Supported Liquid Membrane and Mass Transfer Modeling, J. Ind. Eng. Chem., 12(5), 673 (2006).

 

21. S. Ammari Allahyari, et al., Th(IV) recovery from aqueous waste via hollow fiber renewal liquid membrane (HFRLM) in recycling mode: modelling and experimental validation, RSC Advances, 7, 7413 (2017).

 

22. Alexander M. St John, Robert W. Cattrall, Spas D. Kolev, Extraction of uranium(VI) from sulfate solutions using a polymer inclusion membrane containing di-(2-ethylhexyl) phosphoric acid, Journal of Membrane Science, 364(1-2), 354 (2010).

 

23. A. St John, R. Cattrall, S. Kolev, Transport and separation of uranium(VI) by a polymer inclusion membrane based on di-(2-ethylhexyl) phosphoric acid. Journal of Membrane Science, 242, 409-410, (2012).

 

24. S. Tavakoli, Kinetic and mechanism of thorium(IV) transport through a bulk liquid membrane containing di-2-ethylhexyl phosphoric acid in kerosene, M.S thesis, Shahid Behesti University, Chap. 3, 35 (2015).

 

25. S. Tavakoli, et al., Kinetic and mechanism of thorium(IV) transport through a bulk liquid membrane containing di-2-ethylhexyl phosphoric acid in kerosene, Journal of Separation Science and Engineering, 9(2), 37 ‌(2017).

 

26. W. Lewis, W. Whitman, Principles of gas absorption, Industrial & Engineering Chemistry, 16, 1215 (1924).

 

27. R.E. Treybal, Mass transfer operations. New York (1980).

 

28. W.G. Whitman, The two film theory of gas absorption. Int J Heat Mass Transf, 5(5), 429–33 (1962).