نوع مقاله : مقاله پژوهشی

نویسنده

پژوهشکده‌ی کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 1498-31465، کرج- ایران

چکیده

ماهی آزاد دریای خزر (Salmo trutta caspius) گونه ماهی با ارزش دریای خزر و حوزه اطراف آن است که به ­عنوان گونه‎ای مناسب در صنعت شیلات کشورمان مطرح است. در این پژوهش تخم و اسپرم از ماهی آزاد دریای خزر استحصال شد. برای انجام ماده‎زایی (Gynogenesis) اسپرم با دزهای 450، 600 ،750، 900 و Gy 1050 توسط پرتو گاما (Co60) پرتودهی گردید. در مرحله بعد لقاح به ­صورت خشک با مخلوط نمودن تخمک و اسپرم‌­های پرتو دیده انجام شد. جهت القای پلوییدی حمام آبی با درجه حرارت‌­های 26 تا C˚28 برقرار گردید. نمونه ­گیری از باله دمی ماهی­‌های تیمارهای مختلف صورت گرفت و استخراج DNA صورت گرفته و تعیین جنسیت با استفاده از پرایمرهای 1S1E و 4AS2E مربوط به ژن SDY صورت پذیرفت. پس از رسیدن ماهیان آزاد به وزن مناسب با استفاده از بافت­ شناسی کلاسیک جنسیت مورد بررسی و مطالعه قرار گرفت. نتایج نشان داد که در گروهGy  900 میزان لقاح، بازماندگی لارو نسبت به سایر گروه­‌های گاینوژن با اختلاف معنی‌­داری بیش‌­تر بود (05/0p <). تعیین جنسیت با استفاده از روش­‌های مولکولی نشان داد که در تیمار ماده‎زایی شده با دز Gy 450 هنوز جنس نر (1 نمونه از 5 نمونه) وجود دارد؛ این در صورتی بود که در دزهای دیگر جنس نر وجود نداشت. اما در کلیه نمونه‌­های بافت­ شناسی نشان‌ه­ای از گناد جنسی نر مشاهده نمی‌­شود. با توجه به این نتایج می‌­توان نتیجه گرفت که ماده ­زایی ماهی آزاد دریای خزر با استفاده از روش پرتوتابی گاما به­ صورت موفقیت­ آمیزی انجام شده است و دز Gy 900 به ­عنوان دز مناسب برای استفاده از این روش در این گونه پیشنهاد می‌­شود.

کلیدواژه‌ها

عنوان مقاله [English]

Meiotic gynogenesis inducing in Caspian Sea salmon (Salmo trutta caspius) using gamma irradiation followed by sex determination using SDY gene

نویسنده [English]

  • Gh. Shahhosseini

Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 31465-1498, Karaj - Iran

چکیده [English]

Caspian Sea salmon (Salmo trutta caspius) is a valuable fish species in the Caspian Sea and its surrounding basin, which is considered as a suitable species in our country's fishing industry. Caspian salmon ovums and sperms were extracted from Caspian salmon. To perform gynogenesis, the sperms were irradiated with a gamma ray (60Co) at doses of 450, 600, 750, 900, and 1050 Gy. In the next stage, fertilization was performed by mixing the ovum and the irradiated sperm. To induce ploidy, a water bath with a temperature of 26-28 ˚C was established. The tail fins of different treatments were sampled and the DNA was extracted and its sex was determined using primers E1S1 and E2AS4 related to SDY gene. After salmon reached the appropriate weight, its sex was studied using classical histology. The results showed that in the 900 g group of fertilization, the survival larval was significantly higher than other gynogen groups (p < 0.05). Gender determination using molecular methods showed that in the treatment of female with a dose of 450 Gy, there is still one male determined. (1 sample out of 5 samples), this happened in a case that there was no male in other doses. But in all histological samples, there is no sign of male gonad. According to these results, it can be concluded that the gynogenesis of Caspian Sea salmon has been done successfully using this gamma irradiation method and a dose of 900 Gy is recommended as a suitable dose for using this method in this species.

کلیدواژه‌ها [English]

  • Caspian sea salmon (Salmo trutta caspius)
  • Gynogenesis
  • Gamma irradiation
  • Survival
  • SDY gene
  • Sex determination
1.             A.N. Kazanchev, Translated by: A. Shariati. Fishes of Caspian Sea and its watershed area, Iranian Fish. Organiz., 171 (1992). (In persian)
 
2.             B.H. Kiabi, A. Abdoli, M. Naderi, Status of the fish fauna in the South Caspian Basin of Iran, Zoology in the Middle East, 18, 57-65 (1999).
 
3.             G.H. Thorgaard, Ploidy manipulation and performance, Aquaculture, 57, 57-64 (1986).
 
4.             J.A. Moghaddam, A. Abedian-Kenari, S. Khodabandeh, Effects of dietary vegetal fatty acid and fat content on growth and acclimation to Caspian Sea water in Caspian brown trout (Salmo trutta caspius) parr, Aquaculture, 412, 144-150 (2013).
 
5.             E. Habibi, et al., Feasibility analysis of sex determination of caspian trout (salmo trutta caspius, kessler, 1877) using aflp markers, Genetic Novin 7, 325-332 (2013).
 
6.             G. Shahhosseini, et al., The effect of gynogenesis by use of gamma radiation on hematology and immunology indices in rainbow trout Oncorhynchus mykiss (Walbaum, 1792), Journal of Applied Ichthyological Research, 4, 63-74 (2016).
 
7.             M. Soltani, et al., Comparison of hatching, deformity, survival, growth performance female gynogenetic rainbow trout-and body composition in all (oncorhynchus mykiss) using gamma irradiation, Iranian. Vet. J, 12, 55-63 (2016) (In persian).
 
8.             D. Bertotto, et al., Production of clonal founders in the European sea bass, Dicentrarchus labrax L., by mitotic gynogenesis, Aquaculture, 246, 115-124 (2005).
 
9.             H. Liu, et al., Genetic difference between meiotic gynogenesis and mitotic gynogenesis in the Japanese flounder, Journal of Fisheries of China, 34, 718-724 (2010).
 
10.          A.S. Alsaqufi, et al., Verification of mitotic gynogenesis in ornamental (koi) carp (Cyprinus carpio L.) using microsatellite DNA markers, Aquaculture Research, 45, 410-416 (2014).
 
11.          L. Foisil and  Chourrout D., Chromosome doubling by pressure treatments for tetraploidy and mitotic gynogenesis in rainbow trout, Oncorhynchus mykiss (Walbaum): re‐examination and improvements, Aquaculture Research, 23, 567-575 (1992).
 
12.          M. Hussain, et al., Induction of mitotic and meiotic gynogenesis and production of genetic clones in rohu, Labeo rohita Ham, Bangladesh Journal of Fisheries Research, 1, 1-7 (1997).
 
13.          R.H. Devlin and  Nagahama Y., Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences, Aquaculture, 208, 191-364 (2002).
 
14.          J. Mank, J. Avise, Evolutionary diversity and turn-over of sex determination in teleost fishes, Sexual Development, 3, 60-67 (2009).
 
15.          M. Matsuda, et al., Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes, Zoological Science, 20, 159-161 (2003).
 
16.          M. Matsuda, et al., DMY gene induces male development in genetically female (XX) medaka fish, Proc National Academy Sciences, 104, 3865-3870 (2007).
 
17.          T. Myosho, et al., Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis, Genetics, 191, 163-170 (2012).
 
18.          T. Kamiya, et al., A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu), PLoS genet, 8, e1002798 (2012).
 
19.          A. Yano, et al., The sexually dimorphic on the Y‐chromosome gene (sdY) is a conserved male‐specific Y‐chromosome sequence in many salmonids, Evolutionary applications, 6, 486-496 (2013).
 
20.          A. Felip, et al., Polymorphism and differentiation of rainbow trout Y chromosomes, Genome, 47, 1105-1113 (2004).
 
21.          D. Chourrout, Gynogenesis caused by ultraviolet irradiation of salmonid sperm, Journal of Experimental Zoology, 223, 175-181 (1982).
 
22.          S. Dorafshan, et al., Effects of triploidy on the Caspian salmon Salmo trutta caspius haematology, Fish Physiology and Biochemistry, 34, 195-200 (2008).
 
23.          R. Johnstone, R. Stet, The production of gynogenetic Atlantic salmon, Salmo salar L, Theoretical and Applied Genetics, 90, 819-826 (1995).
 
24.          S. Okunsebor, et al., Effect of temperature on fertilization, hatching and survival rates of Heterobranchus bidorsalis eggs and hatchlings, Current Journal of Applied Science and Technology, 372-376 (2015).
 
25.          M. Sswat, et al., Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2, PLoS One, 13, e0191947 (2018).
 
26.          L.J. Smith, et al., Extraction of cellular DNA from human cells and tissues fixed in ethanol, Analytical Biochemistry, 160, 135-138 (1987).
 
27.          A. Yano, et al., An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss, Current Biology, 22, 1423-1428 (2012).
 
28.          B. Schrek, B. Moyle, Methods for fish biology. American fisheries society, Bethesda. Maryland. USA (1990).
 
29.          D. Chourrout, E. Quillet, Induced gynogenesis in the rainbow trout: sex and survival of progenies production of all-triploid populations, Theoretical and Applied Genetics, 63, 201-205 (1982).
 
30.          T.J. Hansen, et al., Production and verification of the first Atlantic salmon (Salmo salar L.) clonal lines, (2020).
 
31.          G. Streisinger, et al., Production of clones of homozygous diploid zebra fish (Danio rerio), Nature, 291, 293-296 (1981).
 
32.          K. Naruse, et al., The production of cloned fish in the medaka (Oryzias latipes), Journal of Experimental Zoology, 236, 335-341 (1985).
 
33.          J. Komen, et al., Gynogenesis in common carp (Cyprinus carpio L.): II. The production of homozygous gynogenetic clones and F1 hybrids, Aquaculture, 92, 127-142 (1991).
 
34.          M. Itono, et al., Cytological mechanisms of gynogenesis and sperm incorporation in unreduced diploid eggs of the clonal loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae), Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 307, 35-50 (2007).