[1] K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials Process technology and applications,
Materials echnology Series,
4, Dordrecht; Boston: Kluwer Academic Publishers (1998).
[2] A. Santos, T. Kumeria, D. Losic, Nanoporous anodic aluminum oxide for chemical sensing and biosensors, Trends Anal. Chem. 44 (2013) 25-37.
[3] R.M. Metzger, V.V. Konovalov, M. Sun, T. Xu, G. Zangari, B. Xu, M. Benakli, W.D. Doyle, Magnetic Nanowires in Hexagonally Pores of Alumina, IEEE Trans. on Magn. 36 (2000) 30-35.
[4] Y. Piao, H. Kim, Fabrication of nanostructured materials using porous alumina template and their applications for sensing and electrocatalysis, J. nanosci. and nanotechnol., 9 (2009) 2215-2233.
[5] G.Q. Lu, X.S. Zhao, Nanoporous materials- An overview, Nanoporous materials: Science and Engineering, Series on chemical engineering, 4(1-12), London: Imperical College Peress, (2004).
[6] B. Bhushan (Ed.), Scanning probe microscopy in nanoscience and nanotechnology 2, Springer Science & Business Media, (2010).
[7] S. Brunauer, P.H. Emmett, E. Teller, The use of low temperature Van der Waals adsorption isotherm in determining surface area, J. Am. Chem. Soc. 60 (1938) 309.
[8] A.B. Abell, K.L. Willis, D.A. Lange, Mercury intrusion porosimetry and image analysis of cement-based materials, J. Colloid Interface Sci. 211 (1999) 39-44.
[9] C.M. Lopatin, T.L. Alford, V.B. Pizziconi, T. Laursen, A new technique for characterization of pore structures in materials-application to the study of hydroxyapatite thin films, Mater. Lett. 37 (1998) 211–214.
[10] Z. Zolnaiand, A. Deák, N. Nagy, A.L. Tóth, E. Kótai, G. Battistig, A 3D-RBS study of irradiation-induced deformation and masking properties of ordered colloidal nanoparticulate masks, Nucl. Instr. Meth. B 268 (2010) 79–86.
[11] V. Torres-Costaand, F. Pászti, A. Climent-Font, R.J. Martín-Palma, J.M. Martínez-Duart, Prosity profile determination of porous silicon interference filters by RBS, Phys. Stat. Sol. (c) 2 (2005) 3208–3212.
[12] V. Torres-Costaand, R.J. Martín-Palma, F. Paszti, A. Climent-Font, J.M. Martínez-Duart, In-depth RBS study of optical layers based on nanostructured silicon, J. Non-Cryst. Solids. 352, (2006) 2521–2525.
[13] D.J. O'Connor, Ion scattering from 0.1 keV to 10 MeV: A brief review, Microchim. Acta. 120 (1995) 159-170.
[14] A. Loni, A.J. Simons, L.T. Canham, Compositional variations of porous silicon layers prior to and during ion-beam analyses, J. Appl. Phys. 76 (1994) 2825-2832.
[15] S. Kumar, J.V. Ramana, C. David, V.S. Raju, Ion beam analysis of porous silicon layers, Nucl. Instr. Meth. B 179 (2001) 113-120.
[16] T. Giadduiand, L.G. Earwaker, K.S. Forcey, B.J. Aylett, I.S. Harding, A. Loni, L.T. Canham, A comparative study of two ion beam techniques used in the analysis of porous silicon, Nucl. Instr. Meth. B 155 (1999) 308-314.
[17] H. Krzyz_anowska, A.P. Kobzev, J. Z_uk, M. Kulik, Hydrogen and oxygen concentration analysis of porous silicon, J. Non-Cryst., Solids. 354 (2008) 4367–4374.
[18] IAEA-TECDOC-1409, Ion beam techniques for the analysis of light elements in thin films, including depth profiling, IAEA, Vienna, (2004).
[20] M. Kokkoris, M. Diakaki, P. Misaelides, X. Aslanoglou, A. Lagoyannis, C. Raepsaet, V. Foteinou, S. Harissopulos, R. Vlastou, C.T. Papadopoulos, Study of the d+11 B system differential cross-sections for NRA purposes, Nucl. Instr. Meth. B 267 (2009) 1740-1743.
[21] P. Skeldon, K. Shimizu, G.E. Thompson, G.C. Wood, Barrier-type anodic films on aluminium in aqueous borate solutions: 1—Film density and stopping power of anodic alumina films for alpha particles, Surf. and Interface Anal. 5 (1983) 247-251.
[22] P. Skeldon, K. Shimizu, G.E. Thompson, G.C. Wood, Barrier-type anodic films on aluminium in aqueous borate solutions: 2—Film compositions by Rutherford backscattering spectroscopy and nuclear reaction methods, Surf. and Interface Anal. 5 (1983) 252-263.
[23] A.C. Gâlcă, E.S. Kooij, H. Wormeester, C. Salm, V. Leca, J.H. Rector, B. Poelsema, Structural and optical characterization of porous anodic aluminum oxide, J. Appl. Phys. 94 (2003) 4296-4305.
[24] D.R. Pesiri, R.C. Snow, N. Elliott, C. Maggiore, R.C. Dye, The characterization of asymmetric alumina membranes by Rutherford backscattering spectrometry, J. Membr. Sci. 176 (2000) 209-221.
[25] M. Hernandez-Velez, K.R. Pirota, F. Paszti, D. Navas, A. Climent, M. Vazquez, Magnetic nanowire arrays in anodic alumina membranes: Rutherford backscattering characterization, Appl. Phys. A. 80 (2005) 1701.
[26] P. Prieto, K.R. Pirota, A. Climent-font, M. Vazquez, J.M. Sanz, Magnetic antidot arrays on alumina nanoporous membranes: Rutherford backscattering and magnetic characterization, Surf. and Interface Anal. 43 (2011) 1417-1422.
[27] V.K. Khanna, R.K. Nahar, Effect of moisure on the dielectric properties of porous alumina films, Sens. and Actuators. 5 (1984) 187–198.
[28] R.K. Nahar, V.K. Khanna, W.S. Khokle, On the origin of the humidity-sensitive electrical properties of porous aluminium oxide, J. Phys. D 17 (1984) 2097–2095.
[29] R.K. Nahar, V.K. Khanna, Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities, J. Phys. D 19 (1986) L141–L145.
[30] K.S. Chou, T.K. Lee, F.J. Liu, Sensing mechanism of a porous ceramic as humidity sensor, Sens. and Actuators. B 56 (1999) 106–111.
[31] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, E.C. Dickey, Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance, J. Mater., Res. 17 (2002) 1162-1171.
[32] F. Paszti, G. Battistig, Ion beam characterization and modification of porous silicon, Phys. Stat. Sol. (a) 182 (2000) 271-278.
[34] Z. Hajnal, E. Szilagyi, F. Paszti, G. Battistig, Channeling-like effects due to the macroscopic structure of porous silicon, Nucl. Instr. Meth. B 118 (1996) 617-621.
[35] H.H. Andersen, J.F. Ziegler, Hydrogen- Stopping Powers and Ranges in All Elements, vol. 3 of The Stopping and Ranges of Ions in Matter, Pergamon Press, New York, (1977).
[36] M. Mayer, SIMNRA user's guide, Report IPP9/113, Germany: Max-Planck-Institutfur PlasmaPhysik, Garching (1997).
[37] E. Szilagyi, F. Paszti, G. Amsel, Theoretical approximations for depth resolution calculations in IBA methods, Nucl. Instr. Meth. B 100 (1995) 103-121.