[1] D.B. Chrisey, G.K Hubler, Pulsed laser deposition of thin films, Wiley, New York, (1994).
[3] A. Marcinkevicius, S. Juadkazis, M. Watanable, M. Miwa, Femtosecond laser-assisted three-dimensional microfabrication in silica, Opt. Lett. 26 (2001) 277.
[4] F.H. Loesel, J.P. Fischer, M.H. Gots, C. Horvath, Non-thermal ablation of neural tissue with femtosecond laser pulses, Appl. Phys. B 66 (1998) 121.
[5] L.J. Radziemski, From LASER to LIBS, the path of technology development, Spectrochim. Acta, Part B 57 (2002) 1109.
[6] S.S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, V. Sizyuk, The effect of excitation wavelength on dynamics of laser-produced tin plasma, J. Appl. Phys. 109 (2011) 063306.
[7] S.S. Harilal, G.V. Miloshevsky, T. Sizyuk, A. Hassanein, Effects of excitation laser wavelength on Ly-α and He-α line emission from nitrogen plasmas, Phys. Plasmas 20 (2013) 013105.
[8] Reinhard Noll, Laser-Induced Breakdown Spectroscopy Fundamentals and Applications, Springer (2012).
[9] C. Aragon, J.A. Aguilera, Two-Dimensional Spatial Distribution of the Time-Integrated Emission from Laser-Produced Plasmas in Air at Atmospheric Pressure, Appl. Spectrosc. 51 (1997) 1632.
[11] M. Akram, Shazia Bashir, Asma Hayat, Khaliq Mahmood, Riaz Ahmad, M. Khaleeq-U-Rahaman, Effect of laser irradiance on the surface morphology and laser induced plasma parameters of zinc, Laser Part. Beams 32 (2014) 119–128.
[12] T. Kim, Y. Yoon, Effect of Irradiation Wavelength on a Laser Induced Plasma, J. Korean Phys. Soc. 35 (3) (1999) 198.
[13] J.S. Penczak, Yaoming Liu, Robert J. Gordon, Polarization and fluence dependence of the polarized emission in nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta, Part B 66 (2) (2011) 186-188.
[14] S.M.R. Darbani, M. Ghezelbash, A. E. Majd, M. Soltanolkotabi, H. Saghafifar, Temperature effect on the optical emission intensity in laser induced breakdown spectroscopy of super alloys, J. Eur. Opt. Soc. Rap. Pub. 9 (2014) 14058.
[16] M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Effect of Laser-Induced Crater Depth in Laser-Induced Breakdown Spectroscopy Emission Features, Appl. Spec. 59 (2005) 7.
[17] J. Chen, Z. Chen, J. Sun, X. Li, Z. Deng, Y. Wang, Effects of laser pulse sequence on laser-induced soil plasma emission, Appl. Opt 51 (2012) 34.
[18] Andrew J. Effenberger, Jr., Jill R. Scott, Effect of Atmospheric Conditions on LIBS Spectra, Sensors 10 (2010) 4907.
[19] Wolfganf Sdorra, Key Neimax, Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes, Mikrochim. Acta 107 (1992) 319.
[20] N. Farid, S.S. Harilal, H. Ding, A. Hassanein, Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures, J. Appl. Phys. 115 (2014) 033107.
[22] C.B. Dreyer, G.S. Mungas, P. Thanh, J.G. Radziszewski, Spectrochim. Acta, Part B 62 (2007) 1448.
[23] R. Eason, Pulsed Laser Deposition of Thin Films: Application-Led Growth of Functional Materials, Wiley, New York (2007).
[24] Yasou Iida, Effects of atmosphere on laser vaporization and excitation processes of solid samples, Spectrochem. Acta 45 B (12) (1990) 1353.
[25] Lee Y. I. Thiem T. L., Kim G. H., Teng Y.Y., Sneddon J. Appl. Spectrosc. 14 (1992) 1597.
[26] S.S. Harilal, C.V. Bindhu, V.P.N. Nampoori, C.P.G. Vallabhan, Influence of ambient gas on the temperature and density of laser produced carbon plasma, Appl. Phys. Lett. 72 (2) (1998).
[27] J.A. Aguilera, C. Aragon, A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure, Appl. Phys. A 69 [Suppl.] S475 (1999).
[28] S.S. Harilal, Beau O’Shay, Yezheng Tao, Mark S. Tillack, Ambient gas effects on the dynamics of laser-produced tin plume expansion, J. Appl. Phys. 99, (2006) 083303.
[29] Galila Abdellatif, Studying the Role of Ambient Conditions in Laser-induced Al-Plasma Expansion, J. Korean Phys. Soc. 56 (1) (2010) 300.
[30] Shazia Bashir, Nazar Farid, Khaliq Mahmood, M. Shahid Rafique, Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd, Appl. Phys. A 107 (2012) 203.
[31] Nazar Farid, Shazia Bashir, Khaliq Mahmood, Effect of ambient gas conditions on laser-induced copper plasma and surface morphology, Phys. Scr. 85 (2012) 015702.
[32] A. Nakimana, Haiyan Tao, Xun Gao, Zuoqiang Hao and Jingquan Lin, Effects of ambient conditions on femtosecond laser-induced breakdown spectroscopy of Al, J. Phys. D: Appl. Phys. 46 (2013) 285204.
[33] Chan-Kyu Kim, Jung-Hwan In, Seok-Hee Lee and Sungho Jeong, Influence of Ar buffer gas on the LIBS signal of thin CIGS films, J. Anal. At. Spectrom. 28 (2013) 460-467.
[34] Sidra Khan, Shazia Bashir, Asma Hayat, M. Khaleeq-ur-Rahman, Faizan–ul-Haq, Laser-induced breakdown spectroscopy of tantalum plasma, Phys. Plasmas 20, (2013) 073104.
[35] F. Rezaei, S.H. Tavassoli, Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma, Phys. Plasmas 20, (2013) 013301.
[37] S. Amoruso, B. Toftmann, J. Schou, Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow, Phys. Rev. E 69 (2004) 056403.
[38] H.C. Le, D.E. Zeitoun, J.D. Parisse, M. Sentis, W. Marine, Phys. Rev. E 62 (2000) 4152.
[39] S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, Internal structure and expansion dynamics of laser ablation plumes into ambient gases, J. Appl. Phys. 93 (2003) 2380.
[41] J.F. Ready, Effects of High-Power Laser Radiation, Academic, New York (1971).
[42] G.V. Ostrovskaya, A.N. Zaidel, Laser spark in gases, Sov. Phys-Usp. 16 (1974) 834.
[43] C.G. Morgan: Prog. Phys, 38, 621 (1957).
[47] N. Bloembergen, Laser-induced electric breakdown in solids, IEEE J. QE 10 (1974) 375.
[48] V.P. Zharov, V.S. Letokhov: Laser Optoacoustic Spectroscopy, Springer Ser. Opt. Sci 37 (1986).
[49] V. Palleschi, D.P. Singh, M. Vaselli, (eds.): Proc. Int'l Conf. on Phenomena in Ionized Gases, Barga, Italy (1991).
[50] S. Mahmood, R.S. Rawat, M. Zakaullah,.J. Lin, S.V. Springham, T.L. Tan, P. Lee, Investigation of plume expansion dynamics and estimation of ablation parameters of laser ablated Fe plasma, J. Phys. D: Appl. Phys. 42 (2009) 135504.
[51] S. Mahmood, R.S. Rawat, S.V. Springham, T.L. Tan, P. Lee, Material ablation and plasma plume expansion study from Fe and graphite targets in Ar gas atmosphere, Appl. Phys. A, 101 (2010) 695.
[52] Yu. I. Ostrovsky, M. Butusov, G. Ostrovskaya: Interferometry by Holography, Springer Ser. Opt. Sci., 20 (Springer, Berlin, Heidelberg (1980).
[54] P.
Gregorcic, J.
Mozina, High-speed two-frame shadowgraphy for velocity measurements of laser-induced plasma and shock-wave evolution,
Opt. Lett. 36 (15) (2011) 2782.
[55] A.H. Farahbod, M. Afshari, E. Aghayari, Plasma expansion in laser-target interaction process, J. Nucl. Sci. Tech. 58 (2012) 1-7.
[56] I. Mihaila, C. Ursu, A. Gegiuc, G. Popa, Diagnostics of plasma plume produced by laser ablation using ICCD imaging and transient electrical probe technique, J. Phys.: Conf. Ser. 207 (2010).
[60] S.S. Harilal, G.V. Miloshevsky, et.al, Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere, Phys. plasma 19 (2012) 083504.
[61] Annemie Bogaerts, Zhaoyang Chen, Davide Bleiner, Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments, J. Anal. At. Spectrom 21 (2006) 384–395.