نوع مقاله : مقاله فنی

نویسندگان

پژوهشکده‌ کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 14155-1339، تهران- ایران

چکیده

فاصله‌­سنجی به روش پس ­پراکنش کامپتون روشی نوین برای اندازه‌­گیری فاصله بین صفحات فلزی است که می‌­تواند کاربردهای زیادی در صنایع مختلف از جمله صنعت نفت و گاز و پتروشیمی داشته باشد. در این مقاله به ­منظور فاصله‌­سنجی از ورق‌های فولادی با ضخامت‌های 2، 6 و mm 10 به­ عنوان ضخامت‌های کم، متوسط و زیاد استفاده شد. هم‌­چنین با هدف نشان دادن تأثیر انرژی چشمه بر فاصله‌سنجی، دو چشمه Cs137 و Co60 استفاده شده­‌اند. نتایج نشان داد که فاصله‌سنجی به انرژی چشمه گاما وابسته است و برای دقت اندازه‌گیری یکسان، چشمه گاما با انرژی بالاتر قابلیت بیش‌­تری برای اندازه‌گیری فاصله بین دو صفحه فولادی دارد. افزایش انرژی چشمه، دقت اندازه‌گیری را نیز افزایش می‌دهد. علاوه بر انرژی چشمه گاما، فاصله‌سنجی به ضخامت دو صفحه و ترتیب قرارگیری صفحه ضخیم­‌تر نسبت به صفحه نازک‌­تر نیز بستگی دارد. هم‌­چنین با افزایش فاصله بین دو صفحه فلزی، دقت اندازه‌گیری نیز کاهش می‌یابد. به همین دلیل بیشینه فاصله‌سنجی بین دو صفحه، با در نظر گرفتن دقت اندازه‌گیری، به مقدار cm 1 درنظر گرفته شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Distance measuring of steel plates by 137Cs and 60Co sources

نویسندگان [English]

  • M.T. Sasanpour
  • M. Sharifzadeh
  • A. Taheri
  • M. Askari

Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 1339-14155, Tehran - Iran

چکیده [English]

Distance measuring between two metal plates by γ-ray backscattering is a new method that is applicable for different industries, especially the oil, gas, and petrochemical industry. In the present work, 2, 6, and 10 mm thick steel plates were used as thin, medium, and thick plates to perform the experiments. Also, two sources of 137Cs and 60Co have been used to show the effect of source energy on the accuracy of the measurements. The results showed that the distance measurement depends on the Gamma-ray energy, and for the same measurement accuracy, the Gamma source with higher energy would be more applicable for measuring the distance between two steel plates. Moreover, it was found that increasing the γ-ray energy will increase the accuracy of the measurement. In addition to the energy of the gamma source, the distance measurement depends on the thickness of the two plates, the arrangement of the thicker plate comparing to the thinner ones, and the distance between them. Finally, increasing the distance between the plates leads to reducing the measurement accuracy, which was calculated to be one centimeter.

کلیدواژه‌ها [English]

  • Distance measuring
  • Compton backscattering
  • 137Cs
  • 60Co
  • Steel plates
1. A. Juengert, et al, Monitoring of CMC-Jacketed Pipes for High-Temperature Applications, Proceedings of the ASME 2018 Pressure Vessels and Piping Conference. Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition. Prague, Czech Republic. July 15–20, V005T09A010 (2018). ASME. https://doi.org/10.1115/PVP2018-85023.
 
2. J. Garvin, Understand the thermal design of jacketed vessels, Chemical Engineering Progress, 95(6), 61-68, (October 1999).
 
3. Non-destructive Testing: A Guidebook for Industrial Management and Quality Control Personnel, Training Course Series No. 9 (International Atomic Energy Agency, Vienna, 1999) 297 (1999).
 
4. Non-Destructive Testing (NDT)–Guidance Document: An Introduction to NDT Common Methods, (Document: AA050 • Issue 2 • November 2015) 59 (2015).
 
5. A. Karpelson, Ultrasonic Measurement of Air Gap Between Metal Walls Using Bending Waves, e-Journal of Nondestructive Testing (NDT) (2007). https://www.ndt.net/article/v12n09/karpelson.pdf.
 
6. A.H. Compton, A quantum theory of the scattering of x-rays by light elements, J. the Physical Review, 21(5), (1923) 483-502.
 
7. Hiroyuki Toyokawa, et al, High-energy photon radiography system using laser-Compton scattering for inspection of bulk materials, J. Review of Scientific Instruments, 73 (9), (2002).
 
8. Y. Calderon, Design, PhD thesis, Universidad Autonoma de Barcelona, (2014).
 
9. S. Mohammadi, Compton scattering as a probe for materials investigation, Iranian Journal of Physics Research, 9 (2), 31-35 (2009).
 
10. B.S. Moon, et al, A design of the thickness gauge using the compton gamma-ray backscattering, J. Korean Nuclear Society, 32 (5), 457-464 (2000).
 
11. S.A. Tjugum, G.A. Johansen, M.B. Holstad, The use of gamma radiation in fluid flow measurements, J. Radiation Physics and Chemistry, 61, 797–798 (2001).
 
12. J.H. Hubbell, Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. (Nat. Stand. Ref. Data. Ser., Nat. Bur. Stand. (U.S.), 29, Washigton, D.C. 20234, 1969).
 
13. L.N. Gonzalez Gomez, MS Thesis, Universidad Nacional de Colombia Facultad de Ciencias Departamento de Fısica Bogota, D.C., (2013).
 
14. S. Ashrafi, D. Alizadeh, O. Jahanbakhsh, Determination of saturation depth in Compton scattering using Artificial Neural Network, Iranian Journal of Physics Research, 18(2), 195-205, September 2018) (In Persian).
 
15. Gurvinderjit Singh, Bhajan Singh, B.S. Sandhu, Advanced Materials and Radiation Physics (AMRP-2015), pp. 020051-1 – 20051-4 (2015).
 
16. M.T. Sasanpour, A. Taheri, Determination of Probabilistic Distribution Function of Background and Defect Optical Densities for X-Ray Radiography Images of a Steel Plate, J. Nondestruct. Eval. 35, 61 (2016).
 
17. M.T. Sasanpour, et al, Mathematical behavior of optical density of γ-Ray radiography images of steel pipes, was accepted Oct 19, 2018 in Russian journal of Nondestructive Testing and will be published in 2019.
 
18. J.L. Prince, J.M. Links, Medical Imaging Signals and Systems.(Copyright 2015, 2006 by Pearson Education, Inc., publishing as Prentice Hall, 1 Lake Street, Upper Saddle River, NJ 07458).