نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 51113-14399، تهران-ایران

چکیده

در این مطالعه، تأثیر نیروی‌های واکنش تابش در مدل‌های کلاسیکی و کوانتومی بر رفتار پلاسما و میدان‌های الکترومغناطیسی در برهم­کنش لیزرهای فوق پرتوان (2W/cm 1023-1022~I) با پلاسماهای نزدیک بحرانی (حدود چند دهم تا چند برابر چگالی بحرانی) با استفاده از شبیه‌سازی ذره در سلول در یک‌­بعد مکانی در فرمول‌­بندی‌های کلاسیکی و کوانتومی بررسی شده است. نتایج نشان می‌دهند نیروی واکنش تابش تأثیر قابل­‌ملاحظه‌ای بر اختلالات پلاسمایی القا شده و تحولات آن‌ها و هم‌­چنین تحولات خودسازگار لیزر دارد. به­‌طور کلی، در شدت‌های فوق‌­نسبیتی بالاتر (حدود 2W/cm 1023)، وارد کردن اثرات واکنش تابش باعث افزایش تزریق انرژی پالس به پلاسما می‌­شود. این انرژی تزریق شده یا صرف افزایش انرژی مکانیکی اختلال پلاسما (افزایش جذب مؤثر) شده یا به­‌صورت تابش فوتون‌های فرابنفش به بیرون هدر می‌­رود. در شدت‌های پایین‌تر (حدود 2W/cm 1022)، پدیده واکنش تابش بیش‌تر همانند یک نیروی اتلافی و اصطکاکی نقش ایفا کرده و میزان جذب مؤثر و دامنه موج پلاسمایی را کاهش می‌­دهد. اگرچه اثر اصطکاکی نیروی واکنش تابش ملموس و قابل‌­انتظار است، اثر مشاهده شده در افزایش جذب در شدت‌های بالاتر، یک پدیده غیرخطی پیچیده و غیرعادی است. علاوه براین، وجود نیروی واکنش تابش باعث ایجاد بعضی تغییرات الگویی در موج پلاسمایی و اشباع‌­شدگی در جذب انرژی لیزر می­‌شود. در این پژوهش، ضمن گزارش این پدیده‌ها و هم‌چنین مقایسه‌هایی بین نتایج فرمول‌­بندی­های کلاسیکی و کوانتومی، توضیحاتی در مورد آن‌ها ارایه شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of the classical and quantum radiation reaction effect on interaction of ultra high power laser with near critical plasma

نویسندگان [English]

  • H. Hosseinkhani
  • M. Pishdast
  • J. Yazdanpanah
  • S.A. Ghasemi

Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran, Iran

چکیده [English]

In the present study, by using one dimensional PIC simulation, we investigate the radiation reaction (RR) effects on the plasma behaviors and self-consistent laser evolutions during the interaction of ultra-high intensity lasers (I~1022-1023 W/cm2) with near critical plasmas (one tenth to few times of the critical density). The results show that RR force has significant effects on the induced plasma disturbance and self-consistent laser evolutions. Generally, at higher intensities (~1023 W/cm2), introducing the RR effects leads to enhanced delivered electromagnetic energy to the plasma. This energy is either used to increase the mechanical energy of the plasma disturbance (increasing the effective absorption) or compensation of the radiation energy loss by ultra-violate photon emissions. At lower intensities (~1022 W/cm2), RR phenomenon mostly acts as a damping friction force, and reduces the effective absorption and the plasma wave amplitude. Though the friction effect of the RR force is conceptually well known, the observed enhanced absorption at higher intensities is a complex and anomalous nonlinear phenomenon. In addition, the presence of RR force introduces structural differences in the plasma disturbance and whence the absorption saturation. Here, along with reporting these phenomena as well as comparisons between the classical and quantum frameworks, their possible descriptions have been presented.

کلیدواژه‌ها [English]

  • Laser plasma interaction
  • Classical radiation reaction
  • Quantum radiation reaction
1. J. Jackson, Classical electrodynamics3rd ed. (Wiley, 1998).
 
2. I.V. Sokolov, Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fieldsPhysical Review E. 81, 036412 (2010).
 
3. Exawatt Center for Extreme Light Studies, www.xcels.iapras.ru.
 
4. V. Yanovsky, et al., Ultra-high intensity-300-TW laser at 0.1 Hz repetition rateOpt. Express 16, 2109 (2008).
 
5. Extreme Light Infrastructure European Project, www.eli‑laser.eu.
 
6. B. Cros, et al., Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 740, 27-33 (2014).
 
7. SULFhttp://siom.cas.cn.
 
8. M. Pishdast, J. Yazdanpanah, High-energy photon emission and radiation reaction effects in the ultra-high intensity laser bubble regimePhysica Scripta 94, (2019).
 
9. J. Koga, et al., Nonlinear Thomson scattering in the strong radiation damping regime. Physics of Plasmas, 12, 093106 (2005).
 
10. F. Niel, et al. From quantum to classical modeling of radiation reaction: a focus on the radiation spectrumPlasma Phys. Control. Fusion. 60, 094002 (9pp) (2018).
 
11. M. Tamburini, et al. Radiation reaction effects on radiation pressure acceleration, New J. Phys. 12, 123005 (2010).
 
12. T. Blackburn, et al. Quantum radiation reaction in laser-electron-beam collisionsPhys. Rev. Lett. 112, 015001 (2014).
 
13. J.L. Martins, et al, Modelling radiation emission in the transition from the classical to the quantum regime, Plasma Phys. Control. Fusion. 58, 014035 (2016).
 
14. W. Yitong, et al. Effects of radiation reaction on laser proton acceleration in the bubble regimePhysics of Plasmas. 25, 093101 (2018).
 
15. E. Wallin, et. al, Ultra intense laser pulses in near-critical underdense plasmas-radiation reaction and energy partitioning, J. Plasma Phys. 83, 905830208 (2017).
 
16. L.L. Ji, et al, Radiation-Reaction Trapping of Electrons in Extreme Laser FieldsPhysical Review Letters. 112, 145003 (2014).
 
17. X.L. Zhu, et al. Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold coneNew J. Phys. 17, 053039 (2015).
 
18. M. Pishdast, J. Yazdanpanah, S.A. Ghasemi. The effect of laser polarization on radiation reaction trapping of the electrons in ultra high power laser interaction with rarified plasma, Accepted Manuscript, Journal of Nuclear Science and Technology  (In Persian).
 
19. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, (Butterworth-Heinemann, Oxford, 1947).
 
20. F. Niel, et.al, From quantum to classical modeling of radiation reaction: A focus on stochasticity effectsPhysical Review E. 97, 043209 (2018).
 
21. A.D. Piazza, et al. Extremely high-intensity laser interactions with fundamental quantum systemsRev. Mod. Phys. 84, 1177 (2012).
 
22. C.P. Ridgers, Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactionsJournal of Computational Physics. 260, 273–285 (2014).
 
23. R. Duclous, J.G. Kirk, A.R. Bell, Monte Carlo calculations of pair production in high-intensity laser–plasma interactionsPlasma Phys. Controlled Fusion. 53, 015009 (2011).
 
24. M. Lobet, et al. Modeling of radiative and quantum electrodynamics effects in PIC simulations of ultra-relativistic laser-plasma interaction, J. Phys.: Conf. Ser. 688, 012058 (2016).
 
25. T.D. Arber, et al. Contemporary particle-in-cell approach to laser-plasma modelingPlasma Phys. Control. Fusion. 57, 113001 (26pp) (2015).
 
27. J. Derouillat, et al. SMILEI: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulationComput. Phys. Commun. 222, 351-373 (2018).
 
28. C.P. Ridgers, Signatures of quantum effects on radiation reaction in laser–electron-beam collisions, J. Plasma Phys. 83, 715830502 (2017).
 
29. T.G. Blackburn, Radiation reaction in electron–beam interactions with highintensity lasersReviews of Modern Plasma Physics. 4, 1-37 (2020).
 
30. O. Jansen, T. Tuckmantel, A. Pukhov, Scaling electron acceleration in the bubble regime for upcoming lasersEur. Phys. J. Special Topics. 223, 1017–1030 (2014).
 
31. J. Yazdanpanah, Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theoryPlasma Phys. Control. Fusion. 60, 025014 (2018).
 
32. J. Yazdanpanah, Self modulation and scattering instability of a relativistic short laser pulse in an underdense plasma, Plasma Phys. Control. Fusion. 61, 085021 (2019).