نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365 ،‌ تهران-ایران

چکیده

در این پژوهش، امکان بازیابی اورانیم از محلول­‌های آبی با استفاده از فرایند الکترودیالیز بررسی شد. اثر زمان جداسازی، اختلاف پتانسیل الکتریکی، دبی، اسیدیته، غلظت اورانیم و غلظت محلول شستشوی الکترودها مورد مطالعه قرار گرفت. نتایج نشان داد که زمان پایداری الکترودیالیز کم‌تر از 20 دقیقه است. با افزایش اختلاف پتانسیل الکتریکی از 5 تا V 20، جداسازی اورانیم افزایش یافت و سپس به‌دلیل پدیده آبکافت، ثابت ماند. به‌دلیل مقاومت کم‌­تر، عملکرد مدول غشایی تک‌­محفظه‌ای از مدول چندمحفظه‌­ای مناسب­‌تر بود. با افزایش دبی و غلظت خوراک، جداسازی اورانیم به‌دلیل کاهش زمان اقامت و افزایش پدیده پلاریزاسیون غلظتی کاهش یافت. افزایش اسیدیته خوراک به‌دلیل رقابت بین یون‌­های اسید با اورانیم، باعث کاهش جداسازی اورانیم و افزایش شدت جریان الکتریکی گردید. با افزایش غلظت نیترات سدیم در محلول شستشوی الکترودها از 01/0 به M 25/0، درصد جداسازی اورانیم افزایش یافت. نتایج این پژوهش نشان داد که امکان بازیابی اورانیم از محلول‌های آبی با استفاده از فرایند الکترودیالیز وجود دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Performance Evaluation of Electrodialysis for Uranium Recovery from Aqueous Solutions

نویسندگان [English]

  • M. Ghasemi Torkabad
  • A.R. Keshtkar
  • F. Zahakifar
  • A. Yadollahi
  • A. Zaheri

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institue, AEOI, P.O.Box: 11365-8486, Tehran-Iran

چکیده [English]

in the present study, the possibility of uranium recovery from aqueous solutions was investigated using electrodialysis process. Also, the effect of separation time, electrical potential difference, flow rate, acidity, uranium concentration, and concentration of electrodes wash solution were studied. The results showed that the electrodialysis process remained stable in less than 20 minutes. As the electrical potential difference rises from 5 to 20 V, the separation of uranium increased and then remained constant due to the hydrolysis phenomenon. Due to less resistance, the membrane module performance of the single-cell was more appropriate than the multi-cell module. In addition, the uranium separation was reduced by increasing the flow rate and the feed concentration, according to the reduction of residence time and increasing the concentration polarization phenomenon. Anothert result was that the increase of feed solution acidity reduced the uranium separation and increased the electric current, which can be justified by the competition between acid ions and uranium. By increasing the concentration of sodium nitrate in the electrodes wash solution from 0.01 to 0.25 M, the percentage of uranium separation increased. The results of this study showed that the recovery of the uranium from aqueous solutions using electrodialysis process is possible.

کلیدواژه‌ها [English]

  • Electrodialysis
  • Uranium
  • Membrane
  • Electrical Potential Difference
1.  M.E. Nasab, Solvent extraction separation of uranium (VI) and thorium (IV) with neutral organophosphorus and amine ligandsFuel, 116 (2014) 595-600.
 
2.     B.R. Reddy, and D.N. Priya, Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel–cadmium, batteries using Cyanex 923 and 272J. Power sources, 161 (2006) 1428-1434.
 
3.     M. Freitas, T. Penha, and S. Sirtoli, Chemical and electrochemical recycling of the negative electrodes from spent Ni–Cd batteriesJ. Power sources, 163 (2007) 1114-1119.
 
4.    E. Pehlivan, and T. Altun, Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80J. Hazard Mate, 140 (2007) 299-307.
 
5.   L. Zhou, et al., Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan microspheresJ. Hazard Mate, 161 (2009) 995-1002.
 
6.   Application of membrane technologies for liquid radioactive waste processing, in: technical reports series No. 431, International Atomic Energy Agency, 2004.
 
7.  Application of ion exchange processes for the treatment of radioactive waste and management of sprnt ion exchangers, in: technical reports series No. 408, International atomic Energy Agency, 2002.
 
8.    ‌A. Lounis, and ‌C. Gavach, Treatment of uranium leach solution by electrodialysis for anion impurities removalHydrometallurgy, 44 (1997) 83-96.
 
9.  T. Mohammadi, et al., Modeling of metal ion removal from wastewater by electrodialysisSep Purif Techno, 41 (2005) 73-82.
 
10.  T. Mohammadi, A. Razmi, and M. Sadrzadeh, Effect of operating parameters on Pb2+ separation from wastewater using electrodialysisDesalination, 167 (2004) 379-385.
 
11. A. Zaheri, et al., Uranium separation from wastewaterbyelectrodialysisIran J. Environ Health Sci Eng, 7 (2010) 423.
 
12.  C.-V. Gherasim, J. Křivčík, and P. Mikulášek, Investigation of batch electrodialysis process for removal of lead ions from aqueous solutionsChem Eng J, 256 (2014) 324-334.
 
13. ‌Y. Tanaka, and M. Senō, Concentration polarization and water dissociation in ion-exchange membrane electrodialysis. Mechanism of water dissociation, J. Chem Soc, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82 (1986) 2065-2077.
 
14.  X. Tongwen, and Y. Weihua, Citric acid production by electrodialysis with bipolar membranesChem Eng Process: Process Intensification, 41 (2002) 519-524.
 
15. J. Krol, M. Wessling, and H. Strathmann, Concentration polarization with monopolar ion exchange membranes: current–voltage curves and water dissociationJ. Membr Sci, 162 (1999) 145-154.
 
16.  V. Barragan, and C. Ruız-Bauzá, Current–voltage curves for ion-exchange membranes: a method for determining the limiting current densityJ. Colloid  Interface Sci, 205 (1998) 365-373.
 
17.‌ D. A. Cowan, aand J.H. Brown, Effect of turbulence on limiting current in electrodialysis cellsInd Eng Chem, 51 (1959) 1445-1448.
 
18. H.-J. Lee, H. Strathmann, and S.-H. Moon, Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocityDesalination, 190 (2006) 43-50.
 
19. ‌Y. Tanaka, Current density distribution and limiting current density in ion-exchange membrane electrodialysisJ. Membr Sci, 173 (2000) 179-190.
 
20. D.A. Vermaas, M. Saakes, and K. Nijmeijer, Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis, J. membr Sci, 453 (2014) 312-319.
 
21.  E. Laktionov, et al., Production of high resistivity water by electrodialysis. Influence of ion-exchange textiles as conducting spacersSep Sci Techno, 34 (1999) 69-84.
 
22. N. Kabay, et al., Removal of calcium and magnesium hardness by electrodialysisDesalination, 149 (2002) 343-349.
 
23.  G. Belfort, and G.A. Guter, An experimental study of electrodialysis hydrodynamicsDesalination, 10 (1972) 221-262.
 
24.  F. Zahakifar, et al., Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural networkRadiochimica Acta, (2017).
 
25.  E. Korngold, L. Aronov, and O. Kedem, Novel ion-exchange spacer for improving electrodialysis I. Reacted spacerJ. Membr Sci, 138 (1998) 165-170.
 
26.  R. Messalem, et al., Novel ion-exchange spacer for improving electrodialysis II. Coated spacerJ. Membr Sci, 138 (1998) 171-180.
 
27.  P. Długołęcki, et al., Ion conductive spacers for increased power generation in reverse electrodialysisJ. Membrane Science, 347 (2010) 101-107.