نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

2 دانشکده مهندسی، دانشگاه مازندران، صندوق پستی: 416، بابلسر-ایران

3 شرکت فناوری‌های پیشرفته ایران، سازمان انرژی اتمی، صندوق پستی: 5931-143995‌، تهران- ایران

چکیده

عنصر گوگرد شامل 4 ایزوتوپ پایدار است که سنگین­ترین ایزوتوپ آن، گوگرد 36، در تولید رادیو­ایزوتوپ و فعال­سازی نوترونی کاربرد دارد. در این پژوهش با توجه به غلظت بسیار پایین گوگرد 36 در خوراک طبیعی، از زنجیره­ گذرای تک‌خروجی جهت جداسازی این ایزوتوپ استفاده شده است. برای شبیه­سازی زنجیره، معادلات توزیع غلظت در حالت گذرا با استفاده از روش لاسونن گسسته­سازی شده و با روش تکرار q، خطی می­شوند. کد نوشته شده با استفاده از نتایج تجربی موجود صحت­سنجی می­شود. برای جداسازی ایزوتوپ گوگرد به غنای بالای 90 درصد توسط تعداد ماشین سانتریفیوژ معین، چیدمان­های مختلف از زنجیره مربعی تک‌خروجی، مرحله ورود خوراک و شدت جریان خوراک بررسی شده است. در چیدمان با 15 مرحله و 8 ماشین سانتریفیوژ در هر مرحله، غلظت ایزوتوپ گوگرد 36 در مخزن  پس از 1460 ساعت به 95 درصد می­رسد. نتایج نشان داد کاهش جریان خوراک زنجیره و افزایش فاصله مرحله ورود خوراک از مخزن، باعث افزایش غلظت گوگرد 36 در مخزن می­شود.

کلیدواژه‌ها

عنوان مقاله [English]

Simulation of 36S stable isotope enrichment by square single withdrawal cascade

نویسندگان [English]

  • M. Imani 1
  • A.R. Keshtkar 1
  • A. Rashidi 2
  • J. Karimi Sabet 1
  • A. Noroozi 3

1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran-Iran

2 Faculty of Engineering and Technology, University of Mazandaran, P.O.Box: 416, Babolsar-Iran

3 Iran Advanced Technologies Compony, AEOI, P.O.Box: 143995-5931, Tehran-Iran

چکیده [English]

Among the four stable isotopes of sulfur, the heaviest isotope, 36S, has found many applications in radioisotope production and neutron activation. In the present work, due to the very low natural abundance of 36S, the single withdrawal cascades are used to separate this isotope. The concentration distribution equations in the transient state are separated using the Laasonen method and linearized by the q iteration method to simulate the cascade. The code is validated using existing experimental results. To separate the 36S isotope to a high concentration of 90% by a fixed number of centrifuge machines, different arrangements of the square single withdrawal cascades, the feed stage location, and the feed flow rate were investigated. In the arrangement with 15 stages and eight centrifuge machines at each stage, the concentration of 36S in the reservoir reaches 95% after 1460 hours. The results showed that reducing the feed flow of the cascade and increasing the distance of the feed stage from the reservoir leads to an increment in the concentration of 36S in the reservoir.

کلیدواژه‌ها [English]

  • Single withdrawal cascades
  • Square Arrangement
  • 36S Isotope
  • Transient Condition
  • Simulation
  • q Iteration Method
 
1. T.H. Benedict, Nuclear Chemical Engineering, New York: McGraw-Will book Co., (1981).
 
2. Adina Paytan, et al, Application of sulphur isotopes for stratigraphic correlation, Isotopes in Environmental and Health Studies, DOI:10.1080/10256016.2011.625423 (2011).
 
3. Gornitz, Vivien. Encyclopedia of Paleoclimatology and Ancient Environments. 10.1007/978-1-4020-4411-3 (2008).
 
4. A.L. Rudnev, A.N. Tcheltsov, L.Yu. Sosnin, On the use of non-stationarymethods in the centrifuge separation of small quantities of isotopicmixtures. In Proceedings of the 4th All-Russian (International) ScientificConference: Physical-Chemical Processes at Selection of Atoms andMolecules, Zvenigorod, Baranov, V.Yu., Kolesnikov, Yu.A., Eds.; Russian Research Center‘ Kurchatov Institute’, Russia, October 4–8, (1999).
 
5. N. Cheltsov, et al, Centrifugal enrichment of sulfur isotopes. Journal of Radioanalytical and Nuclear Chemistry. 299. 10.1007/s10967-013-2650-4 (2014).
 
6. N. Cheltsov, A, Yu. Sosnin, L, Vyacheslav, Khamylov, Centrifugal enrichment of nickel isotopes and their application to the development of new technologies. Journal of Radioanalytical and Nuclear Chemistry. 299. 10.1007/s10967-013-2755-9 (2014).
 
 
 
 
 
 
 
 
1. T.H. Benedict, Nuclear Chemical EngineeringNew York: McGraw-Will book Co., (1981).
 
2. Adina Paytan, et al, Application of sulphur isotopes for stratigraphic correlationIsotopes in Environmental and Health Studies, DOI:10.1080/10256016.2011.625423 (2011).
 
3. Gornitz, Vivien. Encyclopedia of Paleoclimatology and Ancient Environments10.1007/978-1-4020-4411-3 (2008).
 
4. A.L. Rudnev, A.N. Tcheltsov, L.Yu. Sosnin, On the use of non-stationarymethods in the centrifuge separation of small quantities of isotopicmixtures. In Proceedings of the 4th All-Russian (International) ScientificConference: Physical-Chemical Processes at Selection of Atoms andMolecules, Zvenigorod, Baranov, V.Yu., Kolesnikov, Yu.A., Eds.; Russian Research Center‘ Kurchatov Institute’, Russia, October 4–8, (1999).
 
5. N. Cheltsov, et al, Centrifugal enrichment of sulfur isotopes. Journal of Radioanalytical and Nuclear Chemistry. 299. 10.1007/s10967-013-2650-4 (2014).
 
6. N. Cheltsov, A, Yu. Sosnin, L, Vyacheslav, Khamylov, Centrifugal enrichment of nickel isotopes and their application to the development of new technologies. Journal of Radioanalytical and Nuclear Chemistry. 299. 10.1007/s10967-013-2755-9 (2014).
 
 
 
 
 
 
 
 
 
7. Sosnin, L.Yu,, et al, Centrifugal extraction of highly enriched 120Te and 122Te using the non-steady state method of separation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 480. 36-39. 10.1016/S0168-9002(01)02044-7 (2002).
 
8. N. Tcheltsov, A,  Yu. Sosnin, L. Centrifugal enrichment of selenium isotopes and their application to the development of new technologies and to the experiments on physics of weak interaction. Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment – Nucl. Instrum. Meth. Phys. Res. A. (2004).
 
9. L.Yu. Sosnin, A.N. Tcheltsov, Centrifugal extraction of highly enriched123Te for the production 123I at a cyclotron. Nucl. Istr. Meth. in Phys. A. 438, 14–19 (1999).
 
10. Yanfeng Cao, et al, Study of a Nonstationary Separation Method with Gas Centrifuge Cascade, Separation Science and  Technology, 39 (14), 3405-3429 (2004).
 
11. S. Zeng, C. Ying, Separating isotope components of small abundanceSep. Sci. Technol. 37 (15), 3577–3598 (2002).
 
12. Shi Zeng, Mingshen Zhou, Chuntong Ying, Theoretical and Experimental Study of a Non-stationary Isotope Separation Process in a Gas Centrifuge Cascade, Separation Science and Technology, 38(11), 2375-2394, DOI: 10.1081/SS-120022278 (2003).
 
13. S. Zeng, C. Ying, Transient process in gas centrifuge cascades for separation of multicomponent isotope mixturesSep. Sci. Technol. 36 (15), 3439–3457 (2001).
 
14. S. Zeng, C. Ying, A second-order time-accurate method for determiningthe distribution of concentration distribution of multicomponent mixturesin separation cascades, Sep. Sci. Technol. 35 (5), 729–741 (2000).
 
15. P.J. Migliorini, Modeling and Simulation of Gas Centrifuge Cascades for Enhancing the Efficiency of IAEA SafeguardsMay (2013).
 
16. S. Zeng, C. Ying, A robust and efficient calculation procedure for determining concentration distribution of multicomponent mixtureSep. Sci.Technol. 35 (4), 613–622 (2000).
 
7. Sosnin, L.Yu,, et al, Centrifugal extraction of highly enriched 120Te and 122Te using the non-steady state method of separation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 480. 36-39. 10.1016/S0168-9002(01)02044-7 (2002).
 
8. N. Tcheltsov, A,  Yu. Sosnin, L. Centrifugal enrichment of selenium isotopes and their application to the development of new technologies and to the experiments on physics of weak interaction. Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment – Nucl. Instrum. Meth. Phys. Res. A. (2004).
 
9. L.Yu. Sosnin, A.N. Tcheltsov, Centrifugal extraction of highly enriched123Te for the production 123I at a cyclotron. Nucl. Istr. Meth. in Phys. A. 438, 14–19 (1999).
 
10. Yanfeng Cao, et al, Study of a Nonstationary Separation Method with Gas Centrifuge Cascade, Separation Science and  Technology, 39 (14), 3405-3429 (2004).
 
11. S. Zeng, C. Ying, Separating isotope components of small abundance, Sep. Sci. Technol. 37 (15), 3577–3598 (2002).
 
12. Shi Zeng, Mingshen Zhou, Chuntong Ying, Theoretical and Experimental Study of a Non-stationary Isotope Separation Process in a Gas Centrifuge Cascade, Separation Science and Technology, 38(11), 2375-2394, DOI: 10.1081/SS-120022278 (2003).
 
13. S. Zeng, C. Ying, Transient process in gas centrifuge cascades for separation of multicomponent isotope mixtures, Sep. Sci. Technol. 36 (15), 3439–3457 (2001).
 
14. S. Zeng, C. Ying, A second-order time-accurate method for determiningthe distribution of concentration distribution of multicomponent mixturesin separation cascades, Sep. Sci. Technol. 35 (5), 729–741 (2000).
 
15. P.J. Migliorini, Modeling and Simulation of Gas Centrifuge Cascades for Enhancing the Efficiency of IAEA Safeguards, May (2013).
 
16. S. Zeng, C. Ying, A robust and efficient calculation procedure for determining concentration distribution of multicomponent mixture, Sep. Sci.Technol. 35 (4), 613–622 (2000).