نوع مقاله : مقاله پژوهشی

نویسندگان

1 آزمایشگاه تحقیقاتی غشا، دانشکده فنی کاسپین، پردیس دانشکده‌های فنی، دانشگاه تهران، کدپستی: 4386191836، تهران - ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

در پژوهش حاضر غشاهای مسطح حاوی پلی­اترسولفون خالص، غشاهای آمیخته­ حاوی پلی­اترسولفون و نانوذراتی چون دی­اکسید تیتانیم (2TiO) و نانولوله­های کربنی عامل­دار شده (fMWCNTs) با استفاده از روش وارونگی فازی تهیه شد و رفتار پس­زنی یون بور و میزان شار ترآویده آن­ها با استفاده از فرایند نانوفیلتراسیون مورد ارزیابی و مقایسه قرار گرفت. خواص آب­دوستی غشاهای سنتز شده و ساختار آن­ها به ­ترتیب با اندازه­گیری زاویه تماس و روش میکروسکوپ الکترونی روبشی مورد ارزیابی قرار گرفت. پارامترهای عملیاتی مانند درصد وزنی پلی­اتر­سولفون، pH محیط، زمان، فشار، غلظت اسیدبوریک برای بهینه­سازی میزان درصد پس­زنی بور و شار ترآویده بر روی غشا پلی­اتر­سولفون خالص بررسی شد و در نهایت عملکرد غشاهای آمیخته حاوی درصدهای مختلف این نانودرات در این شرایط بهینه مورد ارزیابی قرار گرفت. نتایج نشان داد که در شرایط بهینه­ فشار Bar 12، 20% وزنی پلی­اتر سولفون، غلظت اسید بوریک ppm 20، زمان min 30 و pH برابر 12 تمامی غشاهای آمیخته دارای میزان پس­زنی و شار ترآویده­ بالاتری نسبت به پلی­اتر­سولفون خالص بوده و از میان آن­ها نیز غشای آمیخته­ حاوی 7/0 درصد وزنی  fMWCNTsبا میزان پس­زنی 79/95­%، بالاترین میزان پس­زنی یون بور را دارا می­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of comparative behavior of boron ion rejection from aqueous solution using mixed matrix membranes in nanofiltration process

نویسندگان [English]

  • R. Khakpor 1
  • R. Yavari 2
  • M.A. Aroon 1
  • H. Alipor 1

1 Membrane Research Laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Postal Code: 4386191836, Tehran - Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran-Iran

چکیده [English]

In this study, flat membranes containing neat polyethersulfone and the mixed matrix membranes containing polyethersulfone and nanoparticles such as titanium dioxide(TiO2) and functionalized multi-walled carbonnanotubes (fMWCNTs) were fabricated by wet phase inversion. And the boron ions' rejection and permeat flux behavior of these prepared membranes were evaluated and compared using the nanofiltration process. The hydrophilic properties of the prepared membranes and their structure were evaluated by measuring the contact angle and the scanning electron microscopy method, respectively. To optimize the amount of boron ion’s rejection percentage and permeate flux on the neat polyethersulfone membrane, the operational parameters such as the weight percentage of polyethersulfone, pH, time, pressure, and boric acid concentration were investigated. Finally, the performance of mixed matrix membranes containing different percentages of nanoparticles was evaluated under these optimal conditions. The results showed that at optimal conditions (pressure=12 bar, polyethersulfone=20% (W/W), concentration of boric acid=20 ppm, time= 30 minutes, and pH=12), all the prepared mixed matrix membranes have higher boron ion rejection percentage and permeate flux than the neat polyethersulfone. The mixed matrix membrane containing fMWCNTs (0.7%wt) has the highest boron ion rejection percentage (95/79%).

کلیدواژه‌ها [English]

  • Boric acid
  • Nanofiltration
  • Mixed matrix membrane
  • Dioxide titanium
  • Functionalized Multi-Walled Carbon Nanotubes
1. L. Melnyk, et al. Boron removal from natural and wastewaters using combined sorption/membrane process, Desalination, 185, 145 (2005).
 
2. X. Liu, J. Wu, J. Wang, Removal of nuclides and boric acid from simulated radioactive wastewater by forward osmosis,  Prog. Nucl. Ene. 114, 155 (2019).
 
3. H.E. Goldbach, M.A. Wimmer, Boron in plants and animal, Env. Exp. Bot. 51, 181 (2004).
 
4. J.W. Spears, T.A. Armstrong, Dietary boron: Evidence for a Role in Immune Function, 2nd ed, (Springer, Netherlands, 2007).
 
5. Guidelines for Drinking-water Quality, fourth ed., (WHO, Geneva, 2011).
 
6. S. Wang, Y. Zhou, C. Gao, Novel high boron removal polyamide reverse osmosis membranes, J. Mem. Sci. 554, 244 (2018).
 
7. P. Dydo, M. Turek, Boron transport and removal using ion-exchange membranes: A critical review, Desalination 310, 2 (2013).
 
8. Z. Guan, et al. Boron removal from aqueous solutions by adsorption — A review, Desalination 383, 29  (2016).
 
9. M.A. Sari, S. Chellam, Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation, J. Col. Int. Sci. 458, 103 (2015).
 
10. P. Remy et al., Removal of boron from wastewater by precipitation of a sparingly soluble salt, Env. Prog. 24, 105 (2005).
 
11. P. Dydo, The mechanism of boric acid transport during an electrodialytic desalination process, J. Membr. Sci. 407, 202 (2012).
 
12. A. Fortuny, M.T. Coll, A.M. Sastre, Use of methyltrioctyl/decylammonium bis2,4,4-(trimethylpentyl) phosphinate ionic liquid (ALiCY IL) on the boron extraction, in chloride media, Sep. Purif. Tech. 97, 137 (2012).
 
13. B. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration. Desalination 315, 2 (2013).
 
14. K. Sunil, et al., Al-Ti2O6 a mixed metal oxide based composite membrane: A unique membrane for removal of heavy metals. Chem. Eng. J. 348, 678 (2018).
 
15. A. Giwa, M. Ahmed, S.W. Hasan, Polymeric Materials for Clean Water, 1nd edition, (Springer, 2019).
 
16. A. Basile, A. Cassano, N.K. Rastogi, Advances in membrane technologies for water treatment: materials, processes and applications. 1nd edition (Elsevier, Amsterdam, 2015).
 
17. S.M. Hosseini, et al., Activated carbon nanoparticles entrapped mixed matrix polyethersulfone based nanofiltration membrane for sulfate and copper removal from water, J. Tai. Ins. Chem. Eng. 82, 169 (2017).
 
18. G. Wu, S. et al., Preparation and characterization of PES/TiO2 composite membranes. Appl. Sur. Sci. 254, 7080 (2008).
 
19. Y. Zhao, et al., Design of thin and tubular MOFs-polymer mixed matrix membranes for highly selective separation of H2 and CO2. Sep Pur Tech. 220, 197 (2019).
 
20. M.S. Jyothi, et al. Aminated Polysulfone/TiO2 Composite Membranes for an Effective Removal of Cr (VI). Chem. Eng. J. 283, 1494  (2016).
 
21. V. Genne, S. Kuypers, R. Leysen, Effect of the addition of ZrO2 to polysulfone based UF membrane. J. Memb. Sci. 11, 343 (1996).
 
22. P.G. Balkanloo, M. Mahmoudian, M.T. Hosseinzadeh, A comparative study between MMT-Fe3O4/PES, MMT-HBE/PES, and MMT-acid activated/PES mixed matrix membranes, Chem. Eng. J. 396, 125188 (2020).
 
23. T.S. Jamil, et al., Novel anti fouling mixed matrix CeO2/Ce7O12 nanofiltration membranes for heavy metal uptake, J. Env. Chem. Eng. 6, 3273 (2018).
 
24. X.F. Sun, et al., Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 281, 53 (2015).
 
25. Y. Cai, et al, Highly active MgO nanoparticles for simultaneous bacterial Inactivation andheavy metal removal from aqueous solution. Chem. Eng. J. 312, 158 (2017).
 
26. M.T. Pérez-Prior, et al, Preparation and characterization of ammonium-functionalized polysulfone/Al2O3 composite membranes. J. Mater. Sci. 50, 5893 (2015).
 
27. A.L. Ahmad, M.A. Majid, B.S. Ooi, Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation, Desalination, 268, 266  (2011).
 
28. V. Vatanpour, et al, Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/Polyethersulfone nanocomposite, J. Mem. Sci. 375, 284 (2011).
 
29. T.H. Bae, T.M. Tak, Effect of TiO2 nanoparticles on fouling mitigation ofultrafiltration membranes for activated sludge filtration. J. Mem. Sci. 249, 1 (2005).
 
30. V. Vatanpour, et al, Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Pur. Tech. 90, 69 (2012).
 
31. R. Yavari, R. Davarkhah, Application of modified multiwall carbon nanotubes as a sorbent for zirconium (IV) adsorption from aqueous solution, J. Rad. Nucl. Chem. 298, 835 (2013).
 
32. R. Yavari, N. Asadollahi, M. Abbas Mohsen, Preparation, characterization and evaluation of a hybrid material based on multiwall carbon nanotubes and titanium dioxide for the removal of thorium from aqueous solution. Prog. Nucl. Eng. 100, 183 (2017).
 
33. V. Vatanpour, et al, Fouling reduction and retention increment of polyethersulfone nano fi ltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J. Mem. Sci. 466, 70  (2014).
 
34. Y. Yang, et al, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Mem. Sci. 288, 231 (2007).
 
35. G. Wu, et al, Preparation and characterization of PES/TiO2 composite membranes. App. Sur. Sci. 254, 7080 (2008).
 
36. N. Kabay, E. Güler, M. Bryjak, Boron in seawater and methods for its separation — A review, Desalination, 261, 212 (2010).
 
37. A. Laura, et al, Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis, Desalination, 261, 331 (2010).
 
38. C.V. Gherasim, P. Mikulášek, Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, Desalination. 343, 67 (2014).
 
39. T. Hoang, G. Stevens, S. Kentish, The effect of feed pH on the performance of a reverse osmosis membrane, Desalination, 261, 99 (2010).
 
40. M. GhasemiTorkabad, A.R. Keshtkar, S.J. Safdari, Comparison of polyethersulfone and polyamide nanofiltration membranes for uranium removal from aqueous solution, Prog. Nucl. Ene. 94, 93 (2017).
 
41. C. Gherasim, J. Cuhorka, P. Mikulasek, Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: experimental results and modelling, J. Mem. Sci. 436, 132 (2013).
 
42. K. Mehiguene, et al, Influence of operating conditions on the retention of copper and cadmium in aqueous solutions by nanofiltration: experimental results and modeling. Sep. Pur. Tech. 15, 181  (1999).
 
43. A. Sotto, et al, Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES–TiO2 membranes, J. Coll. Inter. Sci. 363, 540 (2011).
 
44. Y. Yang, et al, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane, J. Mem. Sci. 288, 231 (2007).
 
45. X. Liua, et al. Removal of nuclides and boric acid from simulated radioactive wastewater by forward osmosis, Prog. Nucl. Ene. 114, 155 (2019).
 
46. L. Melnik, et al. Boron removal from natural and wastewaters using combined sorption/membrane proces, Desalination. 185, 147 (2005).
 
47. W. Fam,  et al, Boron transport through polyamide-based thin film composite forward osmosis membranes, Desalination. 340, 11 (2014).
 
48. P. Dydo, M. Turek, Boron transport and removal using ion-exchange membranes: A critical review, Desalination, 310, 2 (2013).