نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

غشای درون پلیمری بر پایه پلیمر پلی‏وینیل‏کلراید (PVC) حاوی استخراج‏گر آلامین‏‏ 336 و نرم‏ساز پلی‌اکسی‌اتیلن‏آلکیل‏اتر (POE) برای انتقال اورانیم از محیط ‏سولفوریکی مورد ارزیابی قرار گرفت. بدین منظور تأثیر غلظت آلامین 336 و نرم‏ساز POE در فاز غشا، غلظت سولفوریک اسید در فاز خوراک، نوع و غلظت فاز بازیاب‏کننده بر میزان شار اورانیم از میان غشا بررسی شد. نتایج به دست آمده نشان داد که غشای درون پلیمری با ترکیب 40­% وزنی آلامین 336، 21/23­% وزنی نرم­ساز POE و 79/36­% وزنی PVC، غلظت M 1/0 سولفوریک اسید در فاز خوراک و بازیاب‏کننده آمونیم کربنات M 5/0 منجر به بیش­ترین میزان شار اورانیم (s2 mol/m7-10×82/1) از میان غشا می‏شود. هم­چنین مطالعه اثر غلظت اورانیم در فاز خوراک نشان داد که در محدوده غلظت مورد بررسی، انتقال اورانیم از میان غشا توسط نفوذ یون‏های اورانیم از میان لایه انتقال جرم در فاز خوراک و تشکیل کمپلکس بین اورانیم و ماده استخراج‏گر آلامین 336 کنترل می‌شود. در نهایت پایداری غشای ساخته شده در طول هشت آزمایش بررسی شد که نتایج حاصل از آن حاکی از پایداری کامل غشا در طول پنج آزمایش بود.

کلیدواژه‌ها

عنوان مقاله [English]

Extraction of uranium from the sulfuric acid solution using a polymer inclusion membrane containing alamine336

نویسندگان [English]

  • P. Zaheri
  • R. Davarkhah
  • F . Zahakifar

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran-Iran

چکیده [English]

A Polyvinyl chloride (PVC)-based polymer inclusion membrane (PIM) containing alamine336 as the extractant and Polyoxyethylene alkyl ether (POE) as the plasticizer was used for the Transport of uranium from sulfate solution. The effects of extractant and plasticizer concentration in the membrane, sulfuric acid concentration in the feed phase, stripping agent type, and concentration were investigated. The maximum flux of 1.82×10-7 mol/m2s was obtained using a PIM consisting of 40 wt.% alamine336, 23.21 wt.% POE and 36.79 wt.% PVC, 0.1 M sulfuric acid in the feed phase, and 0.5 M (NH4)2CO3 as the stripping phase. The effect of the initial concentration of uranium in the feed phase on uranium transport was also studied. The results show that in the studied range of uranium concentration, the Transport of uranium through the membrane was controlled by diffusion of uranyl ions through the feed phase mass transfer layer. The prepared PIM showed appropriate stability for the Transport of uranium for five consecutive experiments.

کلیدواژه‌ها [English]

  • Polymer inclusion membrane
  • Alamine336
  • Polyoxyethylene alkyl ether
  • Uranium
  • Sulfuric acid solution
  • Ammonium Carbonate
1. M. Aguilar, J.L. Cortina, Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials, CRC Press, (2008).
 
2. P. Ramakul, et al, Separation of radioactive metal ions by hollowfiber-supported liquid membrane and permeability analysis, Journal of the Chinese Institute of Chemical Engineers, 38, 489–494 (2007).
 
3. R.D. Noble, S.A. Stern, Membrane separation technology, Principles and Applications. Elsevier, (1995).
 
4. V.S. Kislik, Liquid Membranes: Principles & Application in Chemical Separations & Wastewater Treatment, first ed., the Netherlands, Elsevier, (2010).
 
5. P. Zaheri, et al, Intensification of Europium extraction through a supported liquid membrane using mixture of D2EHPA and Cyanex272 as carrier, Chemical Engineering and Processing, 92, 18–24 (2015).
 
6. M.I. Almeida, R.W. Cattrall, S.D. Kolev, Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs), Journal of Membrane Science, 415–416, 9–23 (2012).
 
7. B.N. Mahanty, et al, Polymer Inclusion Membranes Containing N,N,N′,N′‑Tetra (2-ethylhexyl) Digly-colamide: Uptake Isotherm and Actinide Ion Transport Studies, Industrial & Engineering Chemistry Research, 54, 3237−3246 (2015).
 
8. P.K. Mohapatra, et al, Uranium pertraction across a PTFE flatsheet membrane containing Aliquat 336 as the carrier, Separation and Purification Technology, 51, 24-30 (2006).
 
9. M.S. El Sayed, Uranium extraction from gattar sulfate leach liquor using aliquat-336 in a liquid emulsion membrane process, Hydrometallurgy, 68, 51–56 (2003).
 
10. M. Shamsipur, R. Davarkhah, A.R. Khanchi, Facilitated transport of uranium(VI) across a bulk liquid membrane containing thenoyltrifluoroacetone in the presence of crown ethers as synergistic agents, Separation and Purification Technology, 71, 63–69 (2010).
 
11. R. Davarkhah, et al, Kinetic studies on the extraction of uranium(VI) from phosphoric acid medium by bulk liquid membrane containing di-2-ethylhexyl phosphoric acid, Journal of Radioanalytical and Nuclear Chemistry, 298, 125-132 (2013).
 
12. S. Biswas, P.N. Pathak, S.B. Roya, Kinetic modeling of uranium permeation across a supported liquid membrane employing dinonyl phenyl phosphoric acid (DNPPA) as the carrier, Journal of Industrial and Engineering Chemistry, 19, 547–553 (2013).
 
13. H. M. Elsayed, et al, Uranium extraction enhancement form phosphoric acid by emulsion liquid membrane, Journal of Radioanalytical and Nuclear Chemistry, 298, 1763–1775 (2013).
 
14. H. Matsuoka, M. Aizawa, Sh. Suzuki, Uphill transport of uranium across a liquid membrane, Journal of Membrane Science, 7, 11-19 (1980).
 
15. N. Bayou, et al, Elaboration and characterisation of a plasticized cellulose triacetate membrane containing trioctylphosphine oxyde (TOPO): Application to the transport of uranium and molybdenum ions, Comptes Rendus Chimie, 13,  1370–1376 (2010).
 
16. A.M. St John, R.W. Cattrall, S.D. Kolev, Extraction of uranium(VI) from sulfate solutions using a polymer inclusion membrane containing di-(2-ethylhexyl) phosphoric acid, Journal of Membrane Science, 364, 354–361 (2010).
 
17. A.M. St John, R.W. Cattrall, S.D. Kolev, Transport and separation of uranium(VI) by a polymer inclusion membrane based on di-(2-ethylhexyl) phosphoric acid, Journal of Membrane Science, 409– 410, 242– 250 (2012).
 
18. B.N. Mahanty, et al, Polymer Inclusion Membrane Containing a Tripodal Diglycolamide Ligand: Actinide Ion Uptake and Transport Studies, Industrial & Engineering Chemistry Research, 55, 2202–2209 (2016).
 
19. Ch. Boirie, Extraction du Sulfate d’Uranyle par les Amines, Bulletin de la Societe Chimique de France, 8-9, 1088-1093 (1958).
 
20. T. Sato, The extraction of uranium (VI) from sulphuric acid solutions by tri-n-octylamine, Journal of Inorganic and Nuclear Chemistry, 25, 441-446 (1963).
 
21. J.R. Kumar, et al, Solvent extraction of uranium (VI) and separation of vanadium (V) from sulfate solutions using Alamine 336, Journal of Radioanalytical and Nuclear Chemistry, 285, 301-308  (2010).
 
22. W.C. Babcock, et al, Coupled transport membranes II: The mechanism of uranium transport with a tertiary amine, Journal of Membrane Science, 7(1), 71-87 (1980).
 
23. M. Eskandari Nasab, Solvent extraction separation of uranium(VI) and thorium(IV) with neutral organophosphorus and amine ligands, Fuel, 116, 595–600 (2014).
 
24. J.E. Quinn, D. Wilkins, K.H. Soldenhoff, Solvent extraction of uranium from saline leach liquors using DEHPA/Alamine 336 mixed reagent, Hydrometallurgy, 134–135, 74–79 (2013).
 
25. C.J. Kim, et al, Solvent extraction studies on uranium using amine based extractants and recovery from low grade ore leach liquors, Journal of the Brazilian Chemical Society, 23, 1254-1264 (2012).
 
26. G. Ramadevi, et al, Solvent extraction of uranium from lean grade acidic sulfate leach liquor with alamine 336 reagent, Journal of radioanalytical and nuclear chemistry, 294, 13–18 (2012).
 
27. J.R. Kumar, et al, Solvent extraction of uranium(VI) and separation of vanadium(V) from sulfate solutions using Alamine 336, Journal of Radioanalytical and Nuclear Chemistry, 285, 301-308 (2010).
 
28. K. Wongkaew, N. Leepipatpiboon, U. Pancharoen, State of the art hollow fiber supported liquid membrane on Pd (II) separation from wastewater using alamine 336, International Journal of Chemical Engineering and Applications, 5.4, 311-314 (2014).
 
29. D. He, M. Ma, Zh. Zhao, Transport of cadmium ions through a liquid membrane containing amine extractants as carriers, Journal of Membrane Science, 169, 53–59 (2000).
 
30. C.H. Brubaker Jr, Textbook errors: XIII. The nature of ionic and molecular species in sulfuric acid, Journal of Chemical Education, 34(7), 325 (1957).
 
31. Y. Yıldız, A. Manzak, O. Tutkun, Selective extraction of cobalt ions through polymer inclusion membrane containing Aliquat 336 as a carrier, Desalination and Water Treatment, 57, 4616-4623 (2016).
 
32. B. Trémillon, Chimie analytique – 1 Généralités, Paris, Armand Colin, (1965).
 
33. R. Bloch, et al, Metal-Ion Seperations by Dialysis through Solvent Membranes. Ind. Eng. Chem. Process. Des. Dev. 6, 231–237 (1967).
 
34. A. Kaya, H.K. Alpoguz, A. Yilmaz, Application of Cr(VI) Transport through the Polymer Inclusion Membrane with a New Synthesized Calix[4]arene Derivative, Industrial & Engineering Chemistry Research, 52, 5428−5436 (2013).