نوع مقاله : مقاله فنی

نویسندگان

1 گروه فیزیک کاربردی، دانشکده فیزیک و مهندسی انرژی، دانشگاه صنعتی امیرکبیر، صندوق پستی:15875-4413 ، تهران، ایران

2 پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی3486-11365 ، تهران‌- ایران

3 پژوهشکده‌ فوتونیک و فناوری‌های کوانتومی، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی 13-14399511، تهران- ایران

4 1. گروه فیزیک کاربردی، دانشکده فیزیک و مهندسی انرژی، دانشگاه صنعتی امیرکبیر، صندوق پستی:15875-4413 ، تهران، ایران

چکیده

پلی­متیل متاآکریلات (PMMA) پلیمر ارزان­قیمتی است که امروزه کاربرد بسیار گسترده­ای در زمینه­های مختلف مثل ساخت تجهیزات نوری، حسگرها و ابزارهای میکروشاره پزشکی دارد. در این مطالعه اثر تابش گامای حاصل از یک چشمه کبالت-60 در دزهای تابشی 10 تا kGy 30 بر تغییر خواص نوری این پلیمر مورد بررسی قرار گرفته است. اثر تابش گاما بر طیف­های عبور و جذب نوری، گاف نواری انرژی، انرژی اورباخ، انرژی­های پاشندگی و ضریب شکست این پلیمر بررسی شده و نتایج آن ارایه شده است. نتایج بیانگر افزایش ضریب جذب، ضریب شکست و هدایت نوری پلیمر PMMA در این بازه از دز تابشی پرتوی گاما است. بزرگی وابسته به طول­موج این کمیت­ها اندازه­گیری شده و به­صورت نمودار ارایه شده است. گاف نواری انرژی پلیمر در این محدوده­ دز تابشی به­تدریج کاهش می­یابد که با افزایش رسانایی نوری نمونه­ها مطابقت دارد. نتایج بیانگر کاهش گاف نواری انرژی پلیمر از eV 461/4 به eV 482/3 با جذب دز kGy 30 تابش گاما است. افزایش ضرایب شکست و جذب و نیز رسانش نوری این پلیمر به همراه داده­های ارایه شده در این پژوهش را می­توان برای ساخت ابزارهای جدید و با قابلیت­های بهبودیافته به­کار گرفت.

کلیدواژه‌ها

عنوان مقاله [English]

Study on the variation of the optical properties of PMMA polymer irradiated by gamma

نویسندگان [English]

  • M. Nodehi 1
  • A.M. Beigzadeh 2
  • M.R. Rashidian Vaziri 3
  • R. Karimi 4

1 Applied Physics Group, Faculty of Physics and Energy Engineering, Amir Kabir University of Technology, P.O. Box: 15875-4413, Tehran – Iran

2 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran - Iran

3 Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14399511-13, Tehran-Iran

4 Applied Physics Group, Faculty of Physics and Energy Engineering, Amir Kabir University of Technology, P.O. Box: 15875-4413, Tehran – Iran

چکیده [English]

Poly (methyl methacrylate) (PMMA) is an inexpensive polymer widely used in different applications such as the fabrication of optical tools, sensors, and microfluidic medical devices. In the present study, the effect of emitted radiations from a Cobalt-60 gamma source with emission doses between 10-30 kGy on the optical properties of this polymer is investigated. The effect of gamma radiation on optical transmission and absorption, bandgap energy, Urbach energy, dispersive energies, and refractive index of this polymer is investigated, and the obtained results are presented. The results indicate that the absorption coefficient, the refractive index, and the optical conductivity of the PMMA polymer increase within this range of gamma radiation doses. The wavelength-dependent magnitudes of these quantities are measured and represented as graphs. Within this irradiation dose range, the bandgap energy of the polymer gradually decreases, which is in agreement with the optical conductivity increase of the samples. The results indicate the reduction of the bandgap energy of polymer from 4.461 eV to 3.482 eV by 30 kGy gamma irradiation dose. Increment of the refractive index and the absorption coefficient and the enhancement of the optical conductivity with the represented data in this work can be used to fabricate new tools with improved capabilities.

کلیدواژه‌ها [English]

  • Poly (methyl methacrylate)
  • Optical Properties
  • Gamma Irradiation
  • Dosimetry
1.    U. Ali, K.J.B.A. Karim, and N.A. Buang, A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polym. Rev. 55(4), 678 (2015).
 
2.    B.K. Mahantesha et al. Effect of electron irradiation on optical, thermal and electrical properties of polymer electrolyte, J. Radioanal. Nucl. Chem. 322(1), 19 (2019).
 
3.  V. Kumar et al. Radiation Effects in Polymeric Materials, 1st ed. (Springer International Publishing, Switzerland, 2019).
 
4.    C. P. Wong, Polymers for electronic and photonic application, 1st ed. (Elsevier, London, 2013).
 
5.    M.F.H. Al-Kadhemy et al. Effect of gamma ray on optical characteristics of (PMMA/PS) polymer blends, J. Theor. Appl. Phys. 11(3), 201 (2017).
 
6.  N.S. Rani et al. Gamma radiation induced conductivity control and characterization of structural and thermal properties of hydroxyl propyl methyl cellulose (HPMC) polymer complexed with sodium iodide (NaI), Adv. Appl. Sci. Res. 4,195 (2013).
 
7.     S. Eid, S. Ebraheem, and N.M. Abdel-Kader Study the effect of gamma radiation on the optical energy gap of Poly (Vinyl Alcohol) based ferrotitanium alloy film: its possible use in radiation dosimetry, Open J. Polym. Chem. 4(2), 21 (2014).
 
8.  M. Paula et al. Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films, Polímeros 29, e2019014 (2019).
 
9.    A. Nabiyev  et al. Influence of gamma irradiation on the morphological properties of HDPE+% ZrO2 polymer nanocomposites, Rom. J. Phys. 64, 603 (2019).
 
10. ‌E.G. Gamaly, Femtosecondlaser-matter interaction: theory, experiments and applications, 2nd ed.  (CRC Press, USA, 2011).
 
11. S.H. Chen and M. Kotlarchyk, Interactions of photons and neutrons with matter, (World Scientifi, 2007).
 
12. D. Akay, U. Gokmen, and S. Ocak, Radiation-induced changes on poly (methyl methacrylate) (PMMA)/lead oxide (PbO) composite nanostructure, Phys. Scr. 94, 11 (2019).
 
13.  N. Madani et. al, Effect of low dose gamma radiation on electric conductivity of LDPE and PMMA polymers, Eng. Solid Mech. 8, 31(2020).
 
14.  JR. Ramya et al, Gamma irradiated poly (methyl methacrylate)-reduced graphene oxide composite thin films for multifunctional applications, Compos. B. Eng. 60, 163 (2019).
 
15.  JH. Jebur et al, The gamma radiation effect on the surface morphology and optical properties of alpha-methyl curcumin: PMMA film, ‌Phys. Scr.  95(2020).
 
16.  A. Almusawe et al. Study of Gamma Irradiation Effect on the Optical Properties of Bromocresol

Green Dye Doped Poly Methyl Methacrylate Thin Films, Results Phys. 7, 807(2017).
 
17. GJ. Habi,Effect of gamma-ray on some optical properties of polymetheylacrelate film (PMMA) doping with phenolphthalein (phph). Period, Eng. Nat. Sci‌, 7, 853(2013).
 
18. A. Moslehi, Evaluation of a microdosimeter designed for measurement of neutrons dose-equivalent in mixed neutron-gamma field, IJRSM 6(1), 7 (2018).
 
19.  N. Balkanian et al. Calculation of Dose Distribution in Irradiation Chamber of the SVHI-Co-60-T Portable Irradiation System Before and After Loading, Using MCNP4C Code and Comparison with the Results of the PMMA Dosimeters to Use for Wheat Irradiation, J. Nucl. Sci. Technol. 35, 25 (2014).
 
20.  A.M. Beigzadeh, M.R. Rashidian Vaziri, and F. Ziaie, Application of double-exposure digital holographic interferometry method for calculating the absorbed dose in poly(methyl methacrylate) environment, IJRSM 5,51 (2017) (In Persian).
 
21.  S.M.R. Aghamiri, M. Namedanian, and Z. Sanjabi, Effect of gamma irradiation on the light polarization variation of PMMA polymer, Opt. Commun. 281(3), 356 (2008).
 
22. B. Parsons, in: Sterilisation of Biomaterials and Medical Devices, 1st ed. (‌Elsevier, USA, 2012)
 
23. L.M. Oliveira, E.S. Araújo, and S.M. Guedes, Gamma irradiation effects on poly (hydroxybutyrate), Polym. Degrad. Stab. 91, 2157 (2006).
 
24. V. Rai, C. Mukherjee, and B. Jain, Optical properties (uv-vis and ftir) of gamma irradiated polymethyl methacrylate (pmma), arXiv preprint arXiv: 1611.02129 (2016).
 
25.  S.V. Harb et al. A comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatings,‌ Prog. Org. Coat. 140, 105477 (2020).
 
26.  V. Rai, C. Mukherjee, and B. Jain, UV-Vis and FTIR spectroscopy of gamma irradiated polymethyl methacrylate, IJPAP. 55, 775 (2017).
 
27.  K-P. Lu, S. Lee, and C.P. Cheng, Transmittance in irradiated poly (methyl methacrylate) at elevated temperatures, J. Appl. Phys. 88, 5022 (2020).
 
28. ‌A. Kalinichev and O.S. Povolotskiy, The Formation of Broadband Color Centers in PMMA by Femtosecond Laser Radiation, Tech. Phys. Lett. 45, 1089 (2019).
 
29.  R.E. Samad et al. Production of color centers in PMMA by ultrashort laser pulses, ‌Radiat. Phys. Chem. 79, 355 (2010).
 
30.  N.M. El-Sayed, Optical and electrical properties of plasma surface treated polymethylmethacrylate films, ESNSA. 52, 83 (2019).
 
31. P. Era, R.M. Jauhar, and P. Murugakoothan, Optimization of growth parameters and investigations on the physico-chemical properties of an organometallic guanidinium chromate single crystal for nonlinear optical and optical limiting application,. Opt. Mater. 99, 109558 (2020).
 
32.  F.‌ Havermeyeret et al. Absorption changes under UV illumination in doped PMMA. App. Phys. B. 72 , 201(2001).
 
33.  L. Wei et al. Photopolymerization-induced two-beam coupling and light-induced scattering in polymethyl methacrylate, Chin. Phys. Lett. 25, 2857 (2008).
 
34. M. Zeinali et al. Study of nonlinear optical properties of TiO2–polystyrene nanocomposite films, Quantum Electron. 49, 951 (2019).
 
35. A. Alisha and J. Rozra, In: AIP Conference Proceedings, (American Institute of Physics, 2012), pp. 237-238.
 
36.  M.L. Krishnan and V.R.K. Kumar, Structural and optical properties of γ-ray irradiated BaF2–Bi2O3–SiO2Glasses, J. Lumin. 217, 116745 (2020).
 
37. S. Ebrahimi and B.Yarmand, Optimized optical band gap energy and Urbach tail of Cr2S3 thin films by Sn incorporation for optoelectronic applications, Phys. Rev. B Condens. Matter. 593, 412292 (2020).
 
38.  P. Fabbri and M. Messori, in:  Modification of Polymer Properties, 1st ed. (Elsevier, USA, 2017) pp. 109-130.
 
39.   M.R.R. Vaziri et al. Investigating the extrinsic size effect of palladium and gold spherical nanoparticles, ‌Opt. Mater. 64, 413 (2017).
 
40.  S. Wemple and M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials, ‌Phys. Rev. B Condens. Matter. 3, 1338 (1971)
 
41. S. Wemple, Refractive-index behavior of amorphous semiconductors and glasses, Phys. Rev. B. ‌7, 3767 (1973).
 
42.   A.S. Hassanien and I. Sharma, Optical properties of quaternary a-Ge15-x Sbx Se50 Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters, Optik 200, 163415 (2020).
 
43. A.S. Hassanien,‌ H.R. Alamri, and I.E. Radaf, Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe 4 thin films synthesized by electron beam deposition, Opt. Quantum Electron. 52, 1(2020).
 
44. H. Shaban et al,. The Influence of Substrate Temperatures and Thickness on Optical and Electrical Conductivity of CuIn (Se 0.25 S 0.75) 2, J. Inorg. Organomet. Polym. Mater. 30, 1360 (2020).