نوع مقاله : مقاله فنی

نویسندگان

دانشکده فیزیک، دانشگاه اصفهان، صندوق پستی: 73441-81746، اصفهان- ایران

چکیده

در پژوهش حاضر با استفاده از درصدهای حجمی مختلف و اندازه­های متفاوت نانوذرات 2TiO (تیتانیا) و 3O2Al (آلومینا)، پارامترهای مهم و اساسی رآکتور 1000VVER-، از جمله پارامترهای دینامیکی رآکتور (نظیر ضرایب راکتیویته دمایی)، که نقش مهمی در تحلیل دینامیکی رآکتور و الزامات ایمنی قلب ایفا می­کنند، محاسبه شده است. به این منظور، ابتدا سلول معادل میله سوخت و نانوسیال خنک­کننده اطراف آن در مجتمع سوخت شش­ضلعی رآکتور 1000VVER- تعیین شد. سپس محاسبات ترموهیدرولیک در غلظت و اندازه­های مختلف نانوذره توسط نرم­افزار شبیه­ساز ANSYS FLUENT انجام شده و تأثیر آنان بر پارامترهای ضریب انتقال حرارت جابه­جایی، دمای سوخت و خنک­کننده محاسبه گردید. در ادامه با استفاده از کدهای محاسبات نوترونیک WIMS و CITATION، قلب رآکتور شبیه­سازی شده و تأثیر تغییرات دمای نانوسیال خنک­کننده و سوخت بر فاکتور ضریب تکثیر مؤثر محاسبه و تحلیل شد. بر این اساس، ضرایب راکتیویته دمایی سوخت و خنک­کننده تعیین گردید. این ضرایب با تغییرات غلظت و اندازه نانوذرات در سیال خنک­کننده محاسبه شده­اند.

کلیدواژه‌ها

عنوان مقاله [English]

Comparative investigation of temperature reactivity feedback coefficients in a pressurized water reactor (PWR) with Alumina (Al2O3) and Titania (TiO2) nano-fluids as coolant

نویسندگان [English]

  • R. Kianpour
  • G.R. Ansarifar

Faculty of Physics, University of Isfahan, P.O.Box: 81746-73441, Isfahan-Iran

چکیده [English]

In the present work, using different volume percentages and different sizes of TiO2 (Titania) and Al2O3 (Alumina) nanoparticles, the important and basic parameters of VVER-1000 reactor including dynamic parameters of reactor (such as temperature reactivity coefficients) that play an important role in reactor dynamic analysis and core safety requirements are calculated. For this purpose, at the first the equivalent cell of fuel rod and the surrounding coolant nanofluid in the hexagonal fuel cell of the VVER-1000 reactor is determined. After that, by using the ANSYS FLUENT simulator software, thermo hydraulic calculations are performed in different concentrations and sizes of nanoparticles to study their effect on the parameters of the heat transfer coefficient, fuel, and coolant temperature. Then, using WIMS and CITATION neutron computing codes, the reactor core is simulated and the effect of coolant nanofluid and fuel temperature changes on the effective multiplication factor is calculated and analyzed. The fuel and coolant temperature reactivity coefficients are determined. These coefficients are calculated by varying the concentration and size of nanoparticles in the coolant.

کلیدواژه‌ها [English]

  • Pressurized water reactor (PWR)
  • Nano fluid
  • Temperature reactivity coefficients
  • Neutronics analysis
  • Thermal hydraulic analysis
  • Heat transfer coefficient
1. S. Khanjani, et al, Effect of cut twisted tape and Al2O3 nanofluid on heat transfer of double tube heat exchanger, Modares Mechanical Engineering, 15 (11), 181-190(2015).
 
2.             H. Aslani, M. Moghiman, Experimental investigation and fuzzy logic modelling of nanofluid solidification behavior, Modares Mechanical Engineering, 15 (11), 284-292 (2016).
 
3.             S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In developments and applications of non-newtonian flows, ASME Fluids Engineering Division (FED), 66, 99- 103 (1995).
 
4.             S. Tashakor, et al, Neutronic analysis of HPLWR fuel assembly cluster, Annals of Nuclear Energy, 50, 38-43 (2012).
 
5.             J. Buongiorno, et al, Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps, Nuclear Technology, 162 (1), 80-91 (2008).
 
6. F. Salimi, J. Salimi, A review of nanofluid applications in the field of heat transfer and mass transfer Scientific-Extension Quarterly , New Process, 42, (1392).
 
7. S.U.I. Ahmad, N.A. Aslam, Effect of different cross-section data sets on reflectors of a typical material test research reactor, Prog. Nucl. Energy, 48(2), 155-164 (2006).
 
8.             R. Kianpour, G.R. Ansarifar, Assessment of the nano-fluid effects on the thermal reactivity feedback coefficients in the VVER-1000 nuclear reactor with nano-fluid as a coolant using thermal hydraulic and neutronics analysis, Annals of Nuclear Energy, 133, 623-636 (2019).
 
9.             Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43, 3701-3707 (2000).
 
10.          M.H. Kayhani, et al, Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. International Communications in Heat and Mass Transfer, 39 (3), 456-462 (2012).
 
11.          C.H. Chon, et al, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87 (15), 153107 (2005).
 
12.          Bushehr, VVER-1000 reactor, Final Safety Analysis Report (FSAR), Chapter 4, Ministry of Russian Federation of Atomic Energy (Atomenergoproekt), Moscow, (2003).
 
13. R. Kianpour, G.R. Ansarifar, M. Fathi, Optimal Design of a VVER-1000 Nuclear Reactor Core with Dual Cooled Annular Fuel based on the Reactivity Temperature Coefficients using Thermal hydraulic and Neutronic Analysis by implementing the Genetic Algorithms, Annals of Nuclear Energy, 148, 107682 (2020).
 
14.          N.E. Todreas, M.S. Kazimi, Nuclear systems: thermal hydraulic fundamentals, CRC Press, (2011).
 
15.          J.R. Lamarsh, Introduction to nuclear reactor theory, Addison-Wesley Reading, MA, (1966).
 
16. A. Koraniani, Optimal fuel richness design of Bushehr nuclear reactor based on thermohydraulic parameters and maximum radial power factor, Master Thesis, University of Isfahan, (1398).
 
17. D.L. Hetrick, Dynamics of Nuclear Reactors the University of Chicago Press Chicago and London, (1971).