نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده‌ فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی 1339-14155، تهران-ایران

چکیده

هدف از این پژوهش، اندازه‌گیری پارامترهای فیزیکی مؤثر بر سطح‌­مقطع دیفرانسیلی واکنش‌های گسیل پرتو گاما ذره - القایی در خط باریکه ˚45 راست شتاب‌دهنده واندوگراف است. ثابت مدرج‌­سازی، ارتباط بین انرژی ذره و فرکانس NMR، با استفاده از واکنش‌های هسته‌ای مناسب تعیین شد. نمودار بازده مطلق آشکارساز HPGe در بازه 60 تا  keV10800 با استفاده از پرتوهای گامای حاصل از چشمه‌های پرتوزای استاندارد و پرتوهای گامای آبشاری حاصل از واکنش‌های گیراندازی پروتون به‌دست آمد. زاویه فضایی آشکارساز ذرات باردار با استفاده از دو روش متفاوت تعیین شد. با استفاده از طیف‌های ذرات پس‌­پراکنده، جریان باریکه و تعداد هسته‌های هدف اندازه‌گیری شدند. هم‌چنین در مورد کاهش زمینه آزمایشگاه و شناسایی قله‌های مزاحم حاصل از واکنش‌های القایی با نوترون بحث شد. با ایجاد شرایط آزمایشگاهی مطلوب، عدم­‌قطعیت‌ سیستماتیک برای اندازه‌گیری سطح‌­مقطع، کم‌­تر از 9% تخمین زده شد.

کلیدواژه‌ها

عنوان مقاله [English]

Favorable experimental conditions for differential cross-section measurement of PIGE reactions using the van de graaff accelerator of tehran

نویسندگان [English]

  • A. Jokar
  • O. Kakuee
  • M. Lamehi-Rachti

Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:14155-1339, Tehran-Iran

چکیده [English]

The present research aims to measure the physical parameters affecting the differential cross-sections of PIGE reactions in the 45˚R beamline of the Van de Graaff accelerator. The calibration coefficient, the correlation between particle energy and NMR frequency, was determined using the relevant nuclear reactions. The absolute efficiency of the HPGe detector within the energy range of 60 to 10800 keV was obtained using the gamma rays of the standard radioactive sources and the cascade gamma rays due to the proton capture reactions.  Two different techniques determined the solid angle of the charged particle detector. Using the backscattered particles' spectra, the beam current and the number of target nuclei were calculated. Also, the necessity for reducing the laboratory background and identifying the undesired peaks due to neutron-induced reactions was discussed.  Under favorable experimental conditions, the systematic uncertainty for cross-section measurement was estimated to be less than 9%.

کلیدواژه‌ها [English]

  • Van de graaff accelerator
  • Particle induced gamma-ray emission
  • Differential cross section
1.  V. Paneta et‌ al., Differential cross-section  measurements of the d + 19F reaction channels for NRA purposes, Nucl. Instr. Meth. B290, 72 (2012).

 

2. ‌ A.‌ Jokar et al, Differential cross section measurements of 27Al(p,p´γ)27Al and 27Al(p,αγ)24Mg reactions in the energy range of 1.6–3.0 MeV, Nucl. Inst. Meth. B 362, 138 (2015).

 

3.  A. Jokar, O. Kakuee and M. Lamehi-Rachti, Measurement of deuteron induced gamma-ray emission differential cross sections on natCl from 1.0 to 2.0, Nucl. Instr. and Meth. B 377, 37 (2016).

 

4.   D. Abriola and A.P. Jesus, “Development of Reference Database for Particle-Induced Gamma-ray Emission (PIGE) Spectroscopy”, (IAEA, Vienna, 2011).

 

5.      IBANDL, http://www-nds.iaea.org/ibandl.

 

6.      EXFOR, https://www-nds.iaea.org/exfor.

 

7.      A. Lagoyannis et al., Study of the 10B(p,αγ)7Be and 10B(p,p´γ)10B reactions for PIGE purposes, Nucl. Instr. Meth. B 342, 271 (2015).

 

8.  J.B. Marion, "Accelerator Calibration Energies", Rev. Mod. Phys. 38, 660 (1966).

 

9.  J.R. Tesmer, Handbook of Modern Ion Beam Materials Analysis, (IAEA, Vienna, 1989). 

 

10.  J.B. Marion and F. C. Young, Nuclear Reaction Analysis, (Wiley, New York, 1967).

11.   M.L. Roush, L. A. West, J. B. Marion. Precision determinations of nuclear reaction calibration energies by velocity measurementsNucl. Phys. A147, 235 (1970).

 

12.  R.E White, P. H. Barker and D. M. J. Lovelock, Measurement of Nuclear Reaction Q-values with High Accuracy: 7 Li(p,n)7Be, Metrologia. 21, 193 (1985).

 

13.    W.M. Toney and A.W. Waltner. An investigation of the 10B(n, α)7Li*,7Li reaction branching ratio Nucl. Phys. A 80, 237 (1966).

 

14.   B.P. Singh and H.C. Evans, Relative efficiency of Ge(Li) gamma ray detector from 0.5 to 12 MeV,Nuclear Instruments and Methods. 97, 475 (1971).

 

15.    G.L. Molnár, Zs. Révay and T. Belgya, Wide energy range efficiency calibration method for Ge detector, Nucl. Instr. Meth. A 489, 140 (2002).

 

16. G.F. Knoll, "Radiation Detection and Measurement", 3nd Edition (John Wiley & Sons, USA, 1999).

 

17.  “Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications”, ref.STI/PUB/1287.

 

18.    M. Mayer, SIMNRA, Report IPP 9/113 (Max Planck institute, Germany, 1997).

 

19.  L. Csedreki, Experimental conditions for cross section measurements for analytical purpose, Acta physica debrecina. xlvi, 25, 25 (2012).

 

20.  C.E. Rolfs and W.S. Rodney, Cauldrons in the Cosmos, (University of Chicago Press, USA, 1988)

 

21.    P. Dimitriou and A.P. Jesus, in Summary Report of the 3rd RCM on “Development of a Reference Database for Particle-Induced Gamma-ray Emission (PIGE) Spectroscopy”, 7-11 April 2014, Vienna.

 

22.  Y. Wang and M. Nastasi (Eds.), Handbook of Modern Ion Beam Materials Analysis, (Chapter 3), in: J. Räisänen, " Particle-Induced Gamma-ray Emission: PIGE ", (IAEA, Vienna, 2009). 

 

23.   Z. Elekes et al., Thick target γ-ray yields for light elements measured in the deuteron energy interval of 0.7-3.4 MeV, Nucl. Instr. Meth. B 168, 305 (2000).
1.  V. Paneta et‌ al., Differential cross-section  measurements of the d + 19F reaction channels for NRA purposes, Nucl. Instr. Meth. B290, 72 (2012).
 
2. ‌ A.‌ Jokar et al, Differential cross section measurements of 27Al(p,p´γ)27Al and 27Al(p,αγ)24Mg reactions in the energy range of 1.6–3.0 MeVNucl. Inst. Meth. B 362, 138 (2015).
 
3.  A. Jokar, O. Kakuee and M. Lamehi-Rachti, Measurement of deuteron induced gamma-ray emission differential cross sections on natCl from 1.0 to 2.0Nucl. Instr. and Meth. B 377, 37 (2016).
 
4.   D. Abriola and A.P. Jesus, “Development of Reference Database for Particle-Induced Gamma-ray Emission (PIGE) Spectroscopy”, (IAEA, Vienna, 2011).
 
5.      IBANDL, http://www-nds.iaea.org/ibandl.
 
6.      EXFOR, https://www-nds.iaea.org/exfor.
 
7.      A. Lagoyannis et al., Study of the 10B(p,αγ)7Be and 10B(p,p´γ)10B reactions for PIGE purposesNucl. Instr. Meth. B 342, 271 (2015).
 
8.  J.B. Marion, "Accelerator Calibration Energies", Rev. Mod. Phys. 38, 660 (1966).
 
9.  J.R. Tesmer, Handbook of Modern Ion Beam Materials Analysis, (IAEA, Vienna, 1989). 
 
10.  J.B. Marion and F. C. Young, Nuclear Reaction Analysis, (Wiley, New York, 1967).

11.   M.L. Roush, L. A. West, J. B. Marion. Precision determinations of nuclear reaction calibration energies by velocity measurementsNucl. Phys. A147, 235 (1970).

 
12.  R.E White, P. H. Barker and D. M. J. Lovelock, Measurement of Nuclear Reaction Q-values with High Accuracy: 7 Li(p,n)7BeMetrologia. 21, 193 (1985).
 
13.    W.M. Toney and A.W. Waltner. An investigation of the 10B(n, α)7Li*,7Li reaction branching ratio Nucl. Phys. A 80, 237 (1966).
 
14.   B.P. Singh and H.C. Evans, Relative efficiency of Ge(Li) gamma ray detector from 0.5 to 12 MeV,Nuclear Instruments and Methods. 97, 475 (1971).
 
15.    G.L. Molnár, Zs. Révay and T. Belgya, Wide energy range efficiency calibration method for Ge detectorNucl. Instr. Meth. A 489, 140 (2002).
 
16. G.F. Knoll, "Radiation Detection and Measurement", 3nd Edition (John Wiley & Sons, USA, 1999).
 
17.  “Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications”, ref.STI/PUB/1287.
 
18.    M. Mayer, SIMNRA, Report IPP 9/113 (Max Planck institute, Germany, 1997).
 
19.  L. Csedreki, Experimental conditions for cross section measurements for analytical purposeActa physica debrecina. xlvi, 25, 25 (2012).
 
20.  C.E. Rolfs and W.S. Rodney, Cauldrons in the Cosmos, (University of Chicago Press, USA, 1988)
 
21.    P. Dimitriou and A.P. Jesus, in Summary Report of the 3rd RCM on “Development of a Reference Database for Particle-Induced Gamma-ray Emission (PIGE) Spectroscopy”, 7-11 April 2014, Vienna.
 
22.  Y. Wang and M. Nastasi (Eds.), Handbook of Modern Ion Beam Materials Analysis, (Chapter 3), in: J. Räisänen, " Particle-Induced Gamma-ray Emission: PIGE ", (IAEA, Vienna, 2009). 
 
23.   Z. Elekes et al., Thick target γ-ray yields for light elements measured in the deuteron energy interval of 0.7-3.4 MeVNucl. Instr. Meth. B 168, 305 (2000).