نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 51113-14399، تهران- ایران

چکیده

در برهم‌کنش لیزرهای فوق پرتوان با پلاسما، پدیده‌های الکترودینامیک کوانتومی از قبیل تابش فوتون‌های پر انرژی توسط الکترون‌ها، به‌دام­اندازی واکنش تابش و یا خلق پاد ذرات می‌تواند سازوکار برهم‌کنش را تحت تأثیر قرار دهد. در این مقاله سازوکار برهم‌کنش لیزر با قطبش‌های خطی و دایروی با شدت بزرگ­تر از 2W/cm 1023 با پلاسمای کم­چگال در حضور نیروی واکنش تابش با استفاده از شبیه‌سازی ذره در سلول بررسی شده است. نتایج نشان می‌دهند که پدیده به‌دام اندازی واکنش تابش برای لیزر با قطبش دایروی قوی‌تر از قطبش خطی است. در برهم‌کنش لیزر با قطبش دایروی، چگالی الکترون‌های به‌دام افتاده بزرگ­تر از قطبش خطی است. هم­چنین چگالی فوتون‌های گسیل شده توسط الکترون‌ها برای قطبش دایروی بزرگ­تر از قطبش خطی است. برای هر دو قطبش لیزر، در زمان­های بعدتر برهم‌کنش، لحاظ نمودن گسیل فوتون و نیروی واکنش تابش، منجر به کاهش قابل­توجه انرژی قطع الکترون‌ها می‌شود. انرژی قطع فوتون‌های گسیل شده برای قطبش دایروی بزرگ­تر از قطبش خطی است.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of laser polarization on radiation reaction trapping of the electrons in ultra high power laser interaction with rarified plasma

نویسندگان [English]

  • M. Pishdast
  • J. Yazdanpanah
  • S.A. Ghasemi

Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran, Iran

چکیده [English]

In ultra-high power laser interaction with plasma, quantum electrodynamics phenomena such as high energy photon emission by electrons, radiation reaction trapping, and anti-particle creation can affect the interaction mechanism. In the present work, the interaction mechanism of the circular and linear laser with an intensity higher than 1023 W/cm2 with rarified plasma in the presence of the radiation reaction force has been investigated using particle in cell simulation. The results indicate that radiation reaction trapping for circular polarization is more effective than the linear one. Also, photons emitted by electrons have a higher density for circular polarization. For both polarizations, at later times of the interaction, considering photon emission and radiation reaction effects lead to the significant decrement of the cut-off energy of electrons. The cut-off energy of the emitted photons for circular polarization is higher than that of linear polarization.

کلیدواژه‌ها [English]

  • Laser polarization
  • Laser-plasma interaction
  • Radiation reaction
 
1. Exawatt Center for Extreme Light Studies, www.xcels.iapras.ru.
 
2. V. Yanovsky, et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate, Opt. Express. 16, 2109 (2008).
 
3. Extreme Light Infrastructure European Project, www.eli-laser.eu.
 
4. SULF, http://siom.cas.cn.
 
5. C.S. Brady, et al., Laser Absorption in Relativistically Underdense Plasmas by Synchrotron Radiation, Phys.Rev. Lett. 109, 245006 (2012).
 
6. Igor V. Sokolov, et al. Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields, Phys. Rev. E, 81, 036412 (2010).
 
7. C.P. Ridgers, et al. Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas, Physics of Plasmas. 20, 056701 (2013).
 
8. Xing-Long Zhu, et al. Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone, New J. Phys. 17, 053039 (2015).
 
9. J.D. Jackson, The Classical electrodynamics, 3th ed (Wiley & Sons, New York , 1998).
 
10. J. Koga, T.Zh. Esirkepov, S.V. Bulanov, Nonlinear Thomson scattering in the strong radiation damping regime. Physics of Plasmas. 12, 093106 (2005).
 
11. M. Pishdast, J. Yazdanpanah, High-energy photon emission and radiation reaction effects in the ultra-high intensity laser bubble regime, Phys. Scr. 94, 065601 (16pp) (2019).
 
12. Y. Wu, et al. Effects of radiation reaction on laser proton acceleration in the bubble regime, Physics of Plasmas. 25, 093101 (2018).
 
13. E. Wallin, et al. Ultra intense laser pulses in near-critical underdense plasmas-radiation reaction and energy partitioning, J. Plasma Phys. 83, (2) 905830208 (2017).
 
14. L. L. Ji, et al. Radiation-Reaction Trapping of Electrons in Extreme Laser Fields, Phys. Rev. Lett. 112, 145003 (2014).
 
15. M. Pishdast, M. Rezvani Jalal, Particle in cell simulation of radiation reaction trapping in near-QED regime, 47th IEEE International Conference on Plasma Science (ICOPS), Singapore (2020), Accepted abstract. A. Gonoskov, et al. Anomalous Radiative Trapping in Laser Fields of Extreme Intensity, Phys. Rev. Lett. 113, 014801 (2014).
 
16. X.L. Zhu, et al., Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone, New J. Phys. 17, 053039 (2015).
 
17. H.X. Chang, et al., Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction. Sci. Rep. 7, 45031 (2017).
 
18. Y.J. Gu, et al. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations, Matter Radiat. Extremes 4, 064403 (2019).
 
19. I.V. Sokolov, et al. Dynamics of emitting electrons in strong laser fields, Physics of Plasmas. 16, 093115 (2009).
 
20. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, A Course of Theoretical Physics, (Pergamon Press, Oxford, 1971) Vol. 2 (1971).
 
21. H.Y. Wang, X.Q. Yan, M. Zepf, Signatures of quantum radiation reaction in laser-electron-beam collisions, Physics of Plasmas. 22, 093103 (2015).
 
22. C.P. Ridgers, et al, Dense Electron-Positron Plasmas and Ultraintense γ rays from Laser-Irradiated Solids, Phys. Rev. Lett. 108, 165006 (2012).
 
23. C.P. Ridgers, et al., Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions, J. Comput. Phys. 260, 273–85 (2014).
 
24. M. Tamburini, et al. Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations, Physical Review E. 85, 016407 (2012).
 
25. Y. Lu, et al., Effect of laser polarization on the electron dynamics and photon emission in nearcritical-density plasmas, Plasma Phys. Control. Fusion, 62, 035002 (9pp) (2020).
 
26. L.L. Ji, et al., Energy partition, γ-ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser-plasma interaction, Physics of Plasmas. 21, 023109 (2014).
 
27. T.D. Arber, et al. Contemporary particle-in-cell approach to laser-plasma modeling, Plasma Phys. Control. Fusion. 57, 113001 (26pp) (2015).
 
28. D. Kuk, Experimental studies of laser driven proton acceleration from ultrashort and highly intense laser pulse interaction with overdense plasma, (Dissertation, The university of Texas at Austin, 2014).
 
29. T.V. Liseikina, A. Macchi, features of ion acceleration by circularly polarized laser pulses, Applied Physics Letters. 91, 171502 (2007).