نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، نفت و گاز، دانشگاه سمنان، صندوق پستی: 363-35195، سمنان - ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

3 شرکت فناوری‌های پیشرفته ایران، سازمان انرژی اتمی، صندوق پستی: 5931-143995‌، تهران- ایران

10.24200/nst.2021.1314

چکیده

رفتار گاز در ماشین سانتریفیوژ را می­توان به دو قسمت مولکولی و پیوسته تقسیم کرد. معادله بولتزمن روشی دقیق برای بررسی رفتار گاز در تمام نواحی ماشین سانتریفیوژ به شمار می­رود. یکی از روش­های حل این معادله، روش DSMC می­باشد. تاکنون چشمه جرمی مورد استفاده در معادله انساگر- پنکیک در ناحیه پیوسته یک چشمه فرضی بوده و پژوهشگران زیادی چشمه­های جرمی فرضی مختلفی را ارایه داده­اند. در پژوهش حاضر، شکل رسیدن خوراک به ناحیه پیوسته و اثرگذاری آن در مرز دو ناحیه به­صورت چشمه جرمی با روش مستقیم مونت­کارلو محاسبه شده و با چشمه جرمی فرضی گانزبرگر مقایسه شده است. سپس چشمه جرمی حاصل از حضور گاز سبک هیدروژن فلوراید در خوراک به­صورت یک مخلوط دو جزیی (97/0=6ZUF و 03/0=ZHF)، (93/0=6ZUF و 07/0=ZHF) و (9/0=6ZUF و 1/0=ZHF) در مرز دو ناحیه محاسبه شده است. با جای­گذاری تابع جریان حاصل در معادلات نفوذ انساگر- کوهن، توزیع غلظت در طول روتور محاسبه شده و در نهایت پارامترهای جداسازی و توان جداسازی محاسبه شده است. نتایج نشان می­دهد که با افزایش مقدار گاز سبک در خوراک ورودی به ماشین فاکتور و توان جداسازی کاهش می­یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling and simulation of the gas behavior in a gas centrifuge rotor in the presence of hydrogen fluoride light gas by DSMC and Onsager-pancake

نویسندگان [English]

  • M. Khajenoori 1
  • S.J. Safdari 2
  • A. Haghighi Asl 1
  • A. Norouzi 3

1 Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, P.O.Box: 35195-363, Semnan - Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran-Iran

3 Iran Advanced Technologies Compony, AEOI, P.O.Box: 143995-5931, Tehran-Iran

چکیده [English]

The gas behavior within a centrifuge machine can be divided into molecular and continuum. The Boltzmann equation is an accurate method for studying the behavior of gas in all areas of a centrifuge. DSMC is one of the methods for solving the Boltzmann equation. In the literature published so far, a presumptive source has been considered the mass source used in the Onsager-Pancake equation in the continuum region. The researchers have presented various presumptive mass sources. In the present work, the feed reaching form to continuum region and its effect on the border between the two areas in the mass source form was calculated using the direct Monte Carlo method. The results were compared with Gunzburger's presumptive mass source. Moreover, the mass source obtained from the presence of hydrogen fluoride light gas in the feed was calculated at the border of two regions as a two-component mixture (ZUF6=0.97, ZHF=0.03), (ZUF6=0.93, ZHF=0.07) and (ZUF6=0.9, ZHF=0.1). The concentration distribution along the rotor was calculated by inserting the obtained flow function into the Onsager-Cohen diffusion equations. Finally, the separation parameters and the separation power were calculated. The results show that the separation factor and the separation power decrease by increasing the light gas amount in the feed entering the machine.

کلیدواژه‌ها [English]

  • Modeling
  • Monte Carlo
  • Molecular reign
  • Mass source
1. A. Norouzi, et al, Parameters optimization of a counter-current cascade based on using a real coded genetic algorithm, Separation Science and Technology, 46 (14), 2223–2230 (2011).
 
2. J. Safdari, A. Noroozi, R. Toumari, Using a real coded PSO algorithm in the design of a multi-component countercurrent cascade, Separation Science and Technology, 52 (18), 2855-2862 (2017).
 
3. V.D. Borisevich, et al, On ideal and optimum cascades of gas centrifuges with variable overall separation factors, Chemical Engineering Science, 116 (6), 465–472 (2014).
 
4. K. Cohen, The theory of isotope separation as applied to the large scale production of U235, McGraw-Hill, 103-125 (1951).
 
5. L.D. Cloutman, R.A. Gentry, Numerical simulation of the countercurrent flow in a gas centrifuge, Los Alamos Scientific Laboratory Rep. LA-UR-81-1821, Los Alamos (1981).
 
6. Soubbaramayer, Centrifugation, Applied Physics, 35, 183-244 (1979).
 
7. D.R. Olander, The theory of uranium enrichment by the gas centrifuge, Progress in Nuclear Energy, 8, 1-33 (1981).
 
8. M.D. Gunzburger, H.G. Wood, A finite element method for the Onsager pancake equation, Computer Methods in Applied Mechanics and Engineering, 31, 43–59 (1982).
 
9. H.G. Wood, J.B. Morton, Onsager’s pancake approximation for the fluid dynamics of a gas centrifuge, Journal of Fluid Mechanics, 101, 1-31 (1980).
 
10. M.D. Gunzburger, H.G. Wood, J.A. Jordan, A finite element method for gas centrifuge flow problems, Journal on Scientific and Statistical Computing, 5, 78-94 (1984).
 
11. S. Zeng, H.G. Wood, Analytical solution of Onsager’s Pancake equation with mass sources and sinks, Separation Science and Technology, 50 (4), 611-617 (2015).
 
12 S. Pradhan, V. Kumaran, The generalized Onsager model for the secondary flow in a high-speed rotating cylinder, Journal of Fluid Mechanics, 686, 140-142 (2011).
 
13. V. Kumaran, S. Pradhan, The generalized Onsager model for a binary gas mixture, Journal of Fluid Mechanics, 753, 307-359 (2014).
 
14. P. Roblin, F. Doneddu, Direct Monte-Carlo simulations in a gas centrifuge, Department Des Precedes d'Enrichissement, 196-170 (2001).
 
15. H.G. Wood, Analysis of feed effects on a single-stage gas centrifuge cascade, Separation Science and Technology, 30 (13), 2631-2657 (1995).
 
16. E. Ratz, One-Stage enrichment with centrifuges, Proceedings of the sixth workshop an gases in strong, Rotation, Tokyo, 621-654 (1985).
 
17. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Univ. Press, New York (1994).
 
18. D.R. Olander, Technical basis of the gas centrifuge, Advances in Nuclear Science & Technology, 6, 105-174 (1972).
 
19. W.H. Furry, R.C. Jones, L. Onsager, On the theory of isotope separation by thermal diffusion, Physical Review, 55, 1083-1095 (1939).