نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی

چکیده

نانوفیلتراسیون یک فناوری غشائی نسبتاً جدید بوده که در صنایع مختلف نظیر صنعت چرخه­‌ی سوخت هسته‌­ای می­‌توان از آن به منظور جداسازی ترکیبات از محلول­‌ها استفاده کرد. این پژوهش، به شناسایی و بررسی تأثیر مهم‌­ترین پارامتر فرایندی بر عملکرد فرایند غشائی نانوفیلتراسیون به منظور جداسازی یون­‌های اورانیم از محلول آبی پرداخته است. با استفاده از نرم‌­افزار MINITAB مشخص شد که از بین پارامترهای pH، فشار، شدت جریان محلول خوراک، غلظت خوراک و غلظت عامل کمپلکس‌­دهنده­‌ی کربنات، pH محلول اثرگذارترین پارامتر در فرایند نانوفیلتراسیون است. با بررسی اثر این پارامتر بر روی عملکرد فرایند مشخص شد که با افزایش pH از 3 تا 9، شدت جریان عبوری از غشا از 42.47 به 80.58l)(h.m2))، و
هم­چنین ضریب پس‌­زنی غشا برای یون‌­های اورانیم از 10 به 98.58% افزایش می­‌یابد. به نظر می‌­رسد با توجه به جداسازی بالای به دست آمده، فرایند نسبتاً جدید نانوفیلتراسیون، پتانسیل خوبی برای استفاده در جداسازی و بازیابی اورانیم محلول در آب دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Effect of Main Parameter in Nanofiltration Membrane Process for Uranium Ions Separation from Aqueous Solution

نویسندگان [English]

  • A. R Keshtkar
  • M Ghasemi Torkabadi
  • S. J Safdari
  • A Zaheri
  • H Sohbatzadeh

چکیده [English]

Nanofiltration is a novel membrane technology that can be used in different industries such as nuclear fuel cycle for components separation from solutions. So, the objective of this research is the selection and investigation of the effect of main process parameter on the nanofiltration membrane process for uranium ions separation from the aqueous solution. The significance and effectiveness of pH, pressure, feed flux, feed concentration, and concentration of carbonate as a complexation agent were investigated by the MINITAB software. The results indicated that pH is the main parameter affecting the nanofiltration process. The effect of pH on the process performance was investigated. The results showed that by increasing pH from 3 to 9 leads to an increase in the permeate flux from 42.47 to 80.58 l/(h.m2). Also, the rejection coefficient increased from 10 to 98.58%. The high separation obtained for uranium ions shows that nanofiltration process has a good potential for the uranium separation and recovery from the aqueous solution.

کلیدواژه‌ها [English]

  • Membrane
  • Uranium
  • Nanofiltration
  • pH
  • Separation
[1] Application of Membrane Technologies for Liquid Radioactive Waste Processing, IAEA, Vienna, (2004) 145.
 
[2] A. Bassil, Industrial Extraction of Uranium Using Ammonium Carbonate and Membrane Separation, United States Patent, Andrew Bassil, (2014).
 
[3] H.M.A. Rossiter, M.C. Graham, A.I. Schäfer, Impact of speciation on behaviour of uranium in a solar powered membrane system for treatment of brackish groundwater, Sep. Purif. Technol. 71 (2010) 89–96.
 
[4] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today’s challenges, Water Res. 43 (2009) 2317-2348.
 
[5] B. Van der Bruggena, M. Manttari, M. Nystrom, Drawbacks of applying nanofiltration and how to avoid them: A review, Sep. Purif. Technol. 63 (2008) 251-263.
 
[6] F. Chang, W. Liu, X. Wang, Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions, Desalination 334 (2014) 10–16
 
[7] C.V. Gherasim, P. Mikulášek, Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, Desalination 343 (2014) 67-74.
 
[8] A.P. Kryvoruchko, L.Y. Yurlova, I.D. Atamanenko, B.Y. Kornilovich, Ultrafiltration removal of U(VI) from contaminated water, Desalination 162 (2004) 229-236.
 
[9] A. Favre-Reguillon, G. Lebuzit, D. Murat, J. Foos, C. Mansour, M. Draye, Selective removal of dissolved uranium in drinking water by nanofiltration, Water Res. 42 (2008) 1160-1166.
 
 
 
 
 
[10] A. Favre-Reguillon, G. Lebuzit, J. Foos, A. Guy, A. Sorin, M. Lemaire, M. Draye, Selective Rejection of Dissolved Uranium Carbonate from Seawater Using Cross-Flow Filtration Technology, Sep. Sci. Technol. 40 (2005) 623-631.
 
[11] O. Raff, R.D. Wilken, Removal of dissolved uranium by nanofiltration, Desalination 122 (1999) 147-150.
 
[12] A.P. Kryvoruchko, I.D. Atamanenko, The effect of dispersed materials on baromembrane treatment of uranium-containing waters, Desalination 204 (2007) 307–315.
 
[13] J.D. Seader, E.J. Henley, D.K. Roper, Separation Process Principles: Chemical and Biochemical Operations, John Wiley & Sons, Inc., United States of America, (2011) 821.
 
[14] Treatment of liquid effluent from uranium mines and mills, IAEA, (2004) 27-44.
 
[15] G. Artug, Modelling and Simulation of Nanofiltration Membranes, Cuvillier Verlag, Göttingen, (2007) 248.
 
[16] S.K. Misra, A.K. Mahatele, S.C. Tripathi, A. Dakshinamoorthy, Studies on the simultaneous removal of dissolved DBP and TBP as well as uranyl ions from aqueous solutions by using Micellar-Enhanced Ultrafiltration Technique, Hydrometallurgy 96 (2009) 47–51.
 
[17] S. Liu, Z. Li, C. Wang, A. Jiao, Enhancing both removal efficiency and permeate flux by potassium sodium tartrate (PST) in a nanofiltration process for the treatment of wastewater containing cadmium and zinc, Sep. Purif. Technol. 116 (2013) 131–136.
 
[18] F. Bi, H. Zhao, L. Zhang, Q. Ye, H. Chen, C. Gao, Discussion on calculation of maximum water recovery in nanofiltration system, Desalination 332 (2014) 142–146.
 
[19] E.A. Tsapiuk, Calculation of the product composition and the retention coefficient by pressure driven membrane separation of solutions containing one and two solutes, J. Membr. Sci. 124 (1997) 107-117.