Feasibility of bromine-76 medical radionuclide production by 7Li$^+$ heavy ion

A. Jamshidi, M. Nirooie*

Department of Radiological Engineering, Faculty of Engineering, Islamic Azad University, Lahijan Branch, P.O.Box: 1616, Lahijan - Iran

Research Article
Received 25.1.2023, Accepted 23.5.2023

Abstract
Bromine-76 (half-life = 16.2 hours) is a positron emitter radionuclide which has a high potential for use in nuclear medicine; but due to the difficulty of producing commercial quantities, it is only used in laboratory studies. This radionuclide is usually produced through the reaction of 76Se(p,n)76Br. The purpose of this research is to investigate the possibility of 76Br commercial production by bombarding targets made of stable germanium isotopes with 7Li$^+$ heavy ion. The excitation functions of 70Ge(Li+n)70Br, 72Ge(Li$^+$,n)72$Br, 73Ge(Li$^+$,$n$)73$Br, 74Ge(Li$^+$,n)74$Br and 76Ge(Li$^+$,$n$)76$Br reactions were drawn using the EMPIRE and LISEcute++ codes, and from the comparison of these excitation functions, the 72Ge(Li$^+$,n)72$Br reaction in the energy range of 30 to 40MeV was selected as the premier reaction. The maximum theoretical production yield in the energy of 40MeV for these codes are 32.46MBq/µAh and 61.43MBq/µAh, respectively. The theoretical and experimental yields of the 76Se(p,n)76Br at energy 16MeV are 506.61MBq/µAh and 88MBq/µAh, respectively. From the comparison of the theoretical production yield of 72Ge(Li$^+$,n)72$Br and 76Se(p,n)76Br reactions, it can be concluded that the 72Ge(Li$^+$,n)72$Br reaction is considered only when the target of 72Ge or a combination of that have long-term irradiation capability (without melting) and thus produce more 76Br activity in practice.

Keywords: Bromine-76, Germanium, Selenium-76, Monte Carlo simulation, Production yield