[1] T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368 (2010) 13-22.
[ 2] S. S. Ahluwalia, Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresource Technol. 08 (2007) 2243-2257.
[ 4] D. Park, Y.-S. Yun, J. Park, The past, present, and future trends of biosorption. Biotechnol. Bioproce. 15(1) (2010) 86-102.
[ 5] S. Ahluwalia, S. Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresource Technol. 08 (2007) 2243-2257.
[ 6] S.K. Kazy, S.K. Das, P. Sar, Lanthanum biosorption by a pseudomonas species: equilibrium studies and chemical characterization, J. Ind. Microbiol. 33 (2006) 773–783.
[ 7] ZR. Holan, B. Volesky, Biosorption of heavy metals. Biotechnol. Prog. 11 (1995) 235–250.
[8] J.L. Gardea-Torresdey, MK. Becker-Hapak, LM. Hosea, DW. Darnall, Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ. Sci. Technol. 24 (1990) 1372–1378.
[9] B. Volesky, Biosorption of heavy metals. CRC Press, Boca Raton (1991).
[10] S. Schiewer, B. Volesky, Biosorption processes for heavy metal removal. In: Lovley DR (ed) Environmental microbe–metal interactions. ASM Press, Washington, DC (2000).
[11] R.H. Crist, JM. Martin, D. Carr, JR.Watson, HJ. Clarke, Interactions of metals Ni2+, Cd2+, Ca2+, Mg2+, Cu2+, Pb2+, Zn2+) and protons with algae. 4. Ion exchange vs. adsorption models and a reassessment of Scatchard plots; ion exchange rates and equilibrium compared with calcium alginate. Environ. Sci. Technol. 28 (1994)1859–1866.
[12] S. Schiewer, B. Volesky, Modeling of the proton metal ion exchange in biosorption. Environ. Sci. Technol. 29 (1995) 3049–3058.
[13] S. Schiewer, B. Volesky, Modeling multi-metal ion exchange in biosorption. Environ. Sci. Technol. 30 (1996) 2921–2927.
[14] J. Wang, C. Chen, Biosorbent for heavy metals removal and their future. Biotechnol. Adv. 27 (2009) 195–226.
[15] A. Sarı, M. Tuzen, Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 160 (2008) 349–355.
[16] ME. Mahmoud, AA. Yakout, MM. Osman, Dowex anion exchanger-loaded-baker’s yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species. J. Hazard. Mater. 164 (2009) 1036–1044.
[17] J. Wang, C. Chen C, Biosorption of heavy metals by Saccharomycescerevisiae: a review. Biotechnol. Adv. 24 (2006) 427–451.
[18] N. Rangsayatorn, P. Pokethitiyook, ES. Upatham, GR. Lanza GR, Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ. Int. 30 (2004) 57–63.
[19] S. Marseaut, A. Debourg, P. Dostalek, J. Votruba, G. Kuncova, J. M. Tobin, A silica matrix biosorbent of cadmium, International Biodeterioration & Biodegradation 54 (2004.) 209–214.
[20] W. Ngeontae, W. Aeungmaitrepirom, T. Tuntulani, Chemically modified silica gel with amino-thioamido-anthraquinone for solid phase extraction and preconcentration of Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). Talanta, 71 (2007) 1075–1082.
[21] D. Chaiko, JP. Kopasz, AJG. Ellison, Use of sol–gel systems for solid liquid separation. Ind. Eng. Chem. Res. 37 (1998) 1071–1078.
[22] AR. Cestari, C. Airoldi, Chemisorption on Thiol–Silicas: Divalent Cations as a Function of pH and Primary Amines on Thiol–Mercury Adsorbed. J. Colloid. Interface. Sci. 195 (1997) 338–347.
[23] T. Akar, Z. Kaynak, S. Ulusoy, D. Yuvaci, G. Ozsari, ST. Akar, Enhanced biosorption of nickel(II) ions by silica-gelimmobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. J. Hazard. Mater. 163 (2009) 1134–1141.
[24] H. Bag˘, M. Lale, AR. Tu¨rker, Determination of iron and nickel by flame atomic absorption spectrophotometry after preconcentration on Saccharomyces cerevisiae immobilized sepiolite. Talanta 47 (1998) 689–696.
[25] D. Humelnicu, G. Drochioiu, K. Popa, Bioaccumulation of thorium and uranyl ions on Saccharomyces cerevisiae. J. Radioanal. Nucl. Chem. 260 (2004) 291–293.
[26] A. R. Keshtkar, M.A. Hassani, biosorption of thorium from aqueous solutions by Ca-pretreated brown algae Cystoseria indica, Korean J. Chem. Eng. 31(2) (2014) 289-295.
[27] X. Liao, L. Li, B. Shi, Adsorption recovery of thorium(IV) by Myrica rubra tanin and larch tannin immobilized onto collagen fibres. J. Radioanal. Nucl. Chem. 260 (2004) 619–625.
[28] MAA. Aslani, M. Eral, S. Akyil, Separation of thorium from aqueous solution using silk fibroin. J. Radioanal. Nucl. Chem. 238 (1998) 123–127.
[29] Y. Andres, HJ. MacCordick, JC. Hubert, Bacterial biosorption and retention of thorium and uranyl cations by Mycobacterium smegmatis. J. Radioanal. Nucl. Chem. 166 (1992) 431–440.
[30] E.A. Bursali, M. Merdivan, M. Yurdakoc, Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent. J. Radioanal. Nucl. Chem. 283 (2010) 471–476.
[31] K. Inoue, H. Kawakita, K. Ohto, T. Oshima, H. Murakami, Adsorptive removal of uranium and thorium with a crosslinked persimmon peel gel. J. Radioanal. Nucl. Chem. 267 (2006) 435–442.
[32] MG. Salinas-Pedroza, MT. Olgun, Thorium removal from aqueous solutions of Mexican erionite and X zeolite. J. Radioanal. Nucl. Chem. 260 (2004) 115–118.
[33] R. Donat, S. Aytas, Adsorption and thermodynamic behavior of uranium(VI) on Ulva sp.-Na bentonite composite adsorbent. J. Radioanal. Nucl. Chem. 265 (2005) 107–114.
[34] R. Donat, GK. Cilgi, S. Aytas, H. Cetisli, Thermodynamic parameters and sorption of U(VI) on ACSD. J. Radioanal. Nucl. Chem. 279 (2009) 271–280.
[35] R. Donat, K. Esen, H. Cetisli, S. Aytas, Adsorption of uranium(VI) onto Ulva sp.-sepiolite composite. J. Radioanal. Nucl. Chem. 279 (2009) 253–261.
[36] C. Gok, D.A. Turkozu, S. Aytas, Removal of Th(IV) ions from aqueous solutions using bi-functionalized algae-yeast biosorbent. J. Radioanal. Nucl. Chem. 287(2) (2011) 533-541.
[37] AC. Atkinson, AN. Donev, Optimum experimental design. Oxford University Press 5 (1992) 132-189.
[38] RH. Myers, DC. Montgomery, Response surface methodology: process and product optimization using designed experiments. 2nd Ed. Wiley Pub Inc, New York (2002) 51-83.
[39] K. Ravikumar, S. Krishnan, S. Ramalingam, KB, Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent. Dyes Pigments 72 (2007) 66-74.
[40] Atlas of Eh-pH diagrams intercomparison of thermodynamic databases, Geological Survey of Japan Open File Report No. 419 (May 2005).
[41] M. Wazne, X. Meng, G. P. Korfiatis, C. Christodoulatos, Carbonate effects on hexavalent uranium removal from water by nano-crystalline titanium dioxide, J. Hazard. Mater. 136 (1) (2005) 47-52.
[42] S. Saxena, M. Prasad, S. F. D'Souza, Radionuclide sorption onto low-cost mineral adsorbent, Industrial and Engineering Chemistry Research 45 (2006) 9122–9128.
[43] H. Jamali Armand, Z. Shamohamady Heydari, Effect of initial concentration on the adsorption yield and equilibrium of lead (II) from aqueous solution on rice husk, J. of Environmental Science and Technology 12 (1) (1389) 19-29.
[44] M. Mohammadi Galehzan, S. Shamohammadi, Comparison of active carbon, sawdust, almond Shell and hazelnut shell adsorbent in removal of Nickel from aqueous environment, J. of Water & Wastewater 24(3) (1392) 71-79.
[45] X.P. Liao, B. Shi, Adsorption of fluoride on zirconium (IV)-impregnated collagen fiber, Int. J. Environ. Sci. Tech. 39 (2005) 4628–4632.
[46] H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1) (2011) 458-465.
[47] S. Gueu, B. Yao, K. Adouby, G. Ado, Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the plam tree, Int. J. Environ. Sci. Tech. 4 (2007) 11-17.
[48] A. Jalil, Aishah, Triwahyono, Sugeng, Adam, S. Hazirah,Rahim, N. Diana, A. Aziz, M. Arif, H. Hairom, N. Hanis,M. Razali, N. Aini, A. Z. Abidin, Mahani, A. Mohamadiah, M. Khairu, Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J. Hazard. Mater. 181(1) (2010) 755-762.
[50] M.C. Palmieri, B. Volesky, O. Garcia, Biosorption of lanthanium using Sargassum Fluitans in batch system, Hydrometallury 67 (2002) 31-36.
[51] I. Ghodbane, O. Hamdaoui, Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies, J. Hazard. Mater. 160 (2008) 301–309.