[1] S.A.H. Feghhi, Z. Gholamzadeh, C. Tenreiro, Investigation of the optimal material type and dimension for spallation targets using simulation methods, Journal of Theor. Appl. Phys. 8 (2014) 1-11.
[2] C.D. Bowman, E.D. Arthur, P.W. Lisowski, G.P. Lawrence, R.J. Jensen, J.L. Anderson, B. Blind, M. Cappielb, J.W. Davidson, T.R. England, L.N. Engel, R.C. Haight, H.G. Hughes III, J.R. Ireland, R.A. Krakowski, R.J. LaBaure, B.C. Letellier, R.T. Perry, W.B. Wilson, Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instr. Meth. A, 320 (1992) 336-367.
[3] G. Lawrence, Transmutation and energy production with high power accelerators, Int. Part. Accel. Conf. (1996) Dallas, Tx, USA, USA.
[4] F. Carminti, R. Klapisch, J.P. Revol, Ch. Roche, J.A. Rubio, C. Rubbia, An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator, European Organisaton for Nuclear Research Cern/AT/93-47 (ET) (1994).
[5] T. Mason, T.A Gabriel, R.K. Crawford, K.W. Herwig, F. Klose, J.F. Ankner, 33rd ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams, AIP Conference proceedings, Bensheim (2004) 21.
[6] S. Maloy, M. James, M. Toloczko, The high temperature tensile properties of ferritic-martensitic and austenitic steels after irradiation in an 800 MeV proton beam, in Conference proceedings seventh information exchange meeting on actinide and fission product partitioning and transmutation (2002).
[7] H.A. Abderrahim, J. Galambos, Y. Gohar, S. Henderson, G, Lawrence, T. MCManamy, A.C. Mueller, S. Nagaitsev, J. Nolen, E. Pitcher, R. Rimmer, R.Sheffield, M. Tadosow, Accelerator and target technology for accelerator driven transmutation and energy production, DOE white paper on ADS, Nucl. Instr. Meth. Phys. 1 (2010) 1-23.
[8] S.A.H. Feghhi, Z. Gholamzadeh, A MCNP simulation study of neutronic calculations of spallation targets, Nucl. Technol. Radiat. 28 (2013) 128-136.
[9] J.M. Carpenter, Pulsed spallation neutron sources for slow neutron scattering, Nucl. Instr. Meth. 145 (1977) 91-113.
[10] G. Bauer, Overview on spallation target design concepts and related materials issues, J. Nucl. Mater. 398 (2010) 19-27.
[11] Y. Kadi, J. Revol, Design of an accelerator-driven system for the destruction of nuclear waste in Lectures given at the Workshop on Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides & Transmutation of Long-Lived Radioactive Waste Trieste (2001).
[12] İ. Demirkol, E. Tel, Multiplicity of particles per primary reaction at 1500MeV for the nuclei used on the accelerator-driven systems, Ann. Nucl. Energy38 (2011) 1078-1083.
[13] A. Morioka, S. Sato, M. Kinno, A. Sakasai, J. Hori, K. Ochiai, M. Yamauchi, T. Nishitani, A. Kaminaga, K. Masaki, S. Sakurai, T. Hayashi, M. Matsukawa, H. Tamai, S. Ishida, Irradiation and penetration tests of boron-doped low activation concrete using 2.45 and 14 MeV neutron sources, J. Nucl. Mater. 329 (2004) 1619-1623.
[14] H.W. Bertini, Low-energy intranuclear cascade calculation, Phys. Rev. 131 (1963) 1801.
[15] Y. Yariv, Z. Fraenkel, Intranuclear cascade calculation of high-energy heavy-ion interactions, Phys. Rev. C. 20 (1979) 2227.
[16] Y. Yariv, Z. Fraenkel, Intranuclear cascade calculation of high energy heavy ion collisions: Effect of interactions between cascade particles, Phys. Rev. C. 24 (1981) 488.
[17] L. Dresner, EVAP--A Fortran Program for Calculating the Evaporation of Various Particles from Excited Compound Nuclei, Oak Ridge National Lab. (1962).
[18] M. Longair, High Energy Astrophysics: Vol. 1, Particles, Photons and Their Detection, Cambridge Univ. Press. (1992).
[19] A. Gandini, M. Salvatores, I. Slessarev, Balance of power in ADS operation and safety, Ann. Nucl. Energy 27 (2000) 71-84.
[20] M. Hassanzadeh, S.A.H. Feghhi, Calculation of the spallation target neutronic parameters in Accelerator Driven Subcritical TRIGA reactor, Ann. Nucl. Energy 85 (2015) 326-330.
[21] A. Ahmad, S.J. Steer, G.T. Parks, A preliminary study of target multiplicity for ADSRs, Energ. Convers. Manage. 69 (2013) 181-190.
[22] D.B. Pelowitz, MCNPX 2.6.0 manual, LANL, LA-CP-07-1473, Los Alamos National Laboratory (2008).
[23] R.E. Prael, H. Lichtenstein, User guide to LCS, the LAHET code system, Group, 10 (1989) 6.
[24] J.F.B. Ed., MCNP – A General Monte Carlo N-Particle Transport Code, Version 4C, April (2000).
[25] M. Hassanzadeh, S.A.H. Feghhi, Sensitivity analysis of core neutronic parameters in accelerator driven subcritical reactors, Ann. Nucl. Energy 63 (2014) 228-232.
[26] N.I. Tak, H.J. Neitzel, X. Cheng, Computational fluid dynamics analysis of spallation target for experimental accelerator-driven transmutation system, Nucl. Eng. Des 235 (2005) 761-772.
[27] H. Bethe, The theory of the passage of rapid neutron radiation through matter, Annalen der Physik 5 (1930) 325-400.