نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

چکیده

 نانوذرات تیتانوسیلیکات آلاییده شده با Nb و Ge، به روش آب- گرمایی ساخته شده و توانایی آن‌­ها در حذف رادیونوکلوئیدهای 90Sr و 137Cs از پسماند­ مایع پرتوزای راکتور تحقیقاتی تهران در روش ناپیوسته ارزیابی شد. فاز بلوری و ریخت‌­شناسی نمونه­‌های ساخته شده، به ترتیب با استفاده از پراش­‌سنجی پرتو ایکس (XRD) و میکروسکوپ الکترون پویشی (SEM) بررسی شد. تجزیه­‌ی عنصری نمونه‌­های جاذب با استفاده از فلوئورسانی پرتو ایکس (XRF) به انجام رسید. مساحت سطح نمونه­‌های ساخته شده، با استفاده از جذب و واجذب نیتروژن
(­BET) اندازه‌­یابی شد. اثر پارامترهای دما، زمان ماند و pH پسماند بر میزان حذف رادیونوکلوئیدهای 90ُSr و 137Cs بررسی شد. یافته‌­ها نشان داد که نمونه­‌های ساخته شده، از توانایی خوبی برای جذب این رادیونوکلوئیدها از پسماند مایع پرتوزای راکتور تحقیقاتی تهران و به طور کلی آمایش پسماندهای مایع برخوردارند. نمونه­‌های تیتانوسیلیکات آلاییده شده تا 25 درصد وزنی با درصد­های وزنی مساوی (­50%) از Nb و Ge، تقریباً ­98.5% از 137Cs و 86.3% از 90Sr را از پسماند حذف کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Adsorptive Removal of 90Sr and 137Cs Radionuclides by Nb-Ge Doped Titanosilicate Nanoparticles from Liquid Radioactive Waste of Tehran Research Reactor

نویسندگان [English]

  • S A. Milani
  • B Maraghe Mianji

چکیده [English]

The Nb-Ge doped titanosilicate nanoparticles were synthesized using a hydrothermal method and their adsorptive behavior for 90Sr and 137Cs radionuclides was investigated in liquid radioactive waste of Tehran research reactor in a batch method. Crystalline phases and morphology of the synthesized samples were studied by X-ray diffraction (XRD) method and scanning electron microscopy (SEM) technique, respectively. Elemental analyses of the samples were performed using X-ray fluorescence (XRF) technique. Surface areas of the samples were measured by the BET method. The effects of  temperature, contact time, and pH of liquid radioactive waste were studied. The obtained results showed that the synthesized samples have a good potential for removal of Sr-90 and Cs-137 radioisotopes from liquid radioactive waste of Tehran research reactor and in general, for the liquid wastes treatment. The samples doped up to 25 wt% with equal amounts (50 wt%) of niobium and germanium, removed almost 98.5% of  137Cs and 86.3% of  90Sr from liquid radioactive waste of Tehran research reactor.

کلیدواژه‌ها [English]

  • Doped Titanosilicate
  • Nb-Ge
  • Nanoparticles
  • Adsorptive Removal
  • 90Sr and 137‌Cs
[1] A. Ramanujam, P.V. Achuthan, P.S. Dhami, R. Kannan, V. Gopalakrishnan, V. Kansra, Separation of carrier-free 90Y from high level waste by supported liquid membrane using KSM-17, J. Radioanal. Nucl. Chem. 247(1) (2001) 185-191.
 
[2] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon press, New York (1984) 107-136.
 
[3] M. Kaikkonen, A Novel Assay Method For Measuring Added Plasma Caesium And Its Application In The Measurement Of Short-term Kinetics, Department Basic Veterinary Scinces (2006).
 
[4] V. Oikonen, K. Sederolm, Model equations for reference tissue compartmental models, Turku PET Center modeling report (2003) 1-6.
 
[5] B. Bennett, M. Repacholi, Z. Carr, Health Effects of the Chernoby Accidentl and Special Health Care programmes (2006).
 
[6] X.L. Hou, C.L. Fogh, K.G. Andersson, H. Dahlgaar, S.P. Nielsen, Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation, The Science of Total Environment, 308 (2003) 97-109.
 
[7] A.C. Palke, J.F. Stebbins, L.A. Boatner, 31P Magic Angle Spinning NMR Study of Flux-Grown Rare-Earth Element Orthophosphate (Monazite/Xenotime) Solid Solutions: Evidence of Random Cation Distribution from Paramagnetically Shifted NMR Resonances, Inorg. Chem. 52 (2013) 12605-12615.
 
[8] D.S. Middlemiss, A.J. Ilott, R.J. Clément, F.C. Strobridge, C.P. Grey, Chemistry of Materials, Density Functional Theory-Based Bond Pathway Decompositions of Hyperfine Shifts: Equipping Solid-State NMR to Characterize Atomic Environments in Paramagnetic Materials, Chem.Mater. 25(9) (2013) 1723-1734.
 
[9] K.­M. Wiaderek, O.­J. Borkiewicz, E. Castillo-Martínez, R. Robert, N. Pereira, G.G. Amatucci, C.P. Grey, P.J. Chupas, K.­W. Chapman, Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy, J. Amer. Chem. Society. 135(10) (2013) 4070-4078.
 
[10] C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azaïs, S.E. Ashbrook, J.M. Griffin, J.R. Yates, F. Mauri, C.J. Pickard, First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist’s Point of View, Chem. Rev. 112(11) (2012) 5733-5779.
 
 
[12] Z. Lu, H. Chen, R. Robert, B.Y.X. Zhu, J. Deng, L. Wu, C.Y. Chung, C.P. Grey, Citric Acid- and Ammonium-Mediated Morphological Trans-formations of Olivine LiFePO4 Particles, Chem. Mater. 23(11) (2011) 2848-2859.
 
[13] J. Kim, D.S. Middlemiss, N.A. Chernova, B.Y.X. Zhu, C. Masquelier, C.P. Grey, Linking Local Environments and Hyperfine Shifts: A Combined Experimental and Theoretical31P and 7Li Solid-State NMR Study of Paramagnetic Fe(III) Phosphates, J.  Amer. Chem. Society. 132(47) (2010) 16825-16840.
 
 
[15] IAEA, handling and treatment of radio active aques waste, TECDOC 654 (1992).
 
[16] A. Heidari, H. Younesi, Z. Mehraban, Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica, Chem. Eng. J. 153(1-3) (2009) 70-79.
 
[17] A. Tripathi, D.G. Medvedev, J. Delgado, A. Clearfield, Optimizing Cs-exchange in Titanosilicate with the Mineral Pharmaco-siderite Topology: Framework Substitution of Nb and Ge, J. Solid. State. Chem. 177 (2004) 2903-2915.
 
 
[18] A.M. Puziy, Cesium and strontium exchange by the framework potassium titanium silicate K3­HTi4­O4­(SiO4­)3­·4H2O, J. Radioanal.  Nucl. Chem. 237 (1998) 73-79.
 
[19] V. Luca, J.V. Hanna, M.E. Smithh, M. James, D.R.G. Mitchell, J.R. Batlett, Nb- substitution and Cs+ ion-exchange in the titanosilicat sitinakite, Microporous Mesooporous mater. 55 (2002) 1-13.
 
[20] A. TripathiD.G. MedvedevbM. NymancA. Clearfield, Selectivity for Cs and Sr in Nb-substituted titanosilicate with sitinakite topology, J. Solid. State. Chem. 175(1) (2003) 72–83.
 
[21] A. Altomare, J. Foadi, C. Giacovazzo, A.G.G. Moliterni, M.C. Burla, G. Polidori, Solving crystal structures from powder data. IV. The use of patterson information for estimating the |F|'s, J. Appl. Cryst. 31 (1998) 74-77.
 
[22] A. Altomare, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, R. Rizzi, Werner PE  New  techniques for indexing: N-treor in expo journal of applied crystallography, 33 (2000) 1180-1186.
 
[23] R. ChakrabortyP. Chattopadhyay, Sodium titaniumsilicate as ion exchanger: synthesis, characterization and application in separation of 90Y from 90Sr, J. Radioanal. Nucl. Chem. 294(1) (2011) 31-35.
 
[24] AR. Khanchi, R. Yavari, SK. Pourazarsa, Preparation and evaluation of composite ion-exchanger for the removal of cesium and strontium radioisotopes, J. Radioanal. Nucl. Chem. 273 (2007) 141-145.