نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران تهران ـ ایران

2 دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، صندوق پستی، تهران ـ ایران

3 گروه پزشکی هسته‌ای، دانشکده پزشکی دانشگاه علوم پزشکی و خدمات درمانی تهران، تهران ـ ایران

چکیده

در این پژوهش، یک مدل پویایی‌شناسی سیستم، برای شبیه‌سازی تصمیم‌های مدیریت موجودی مولدهای رادیونوکلید ارایه شده است. در مولدهای رادیونوکلید، رادیودارو به مرور زمان از رادیونوکلید دیگری به نام رادیونوکلید مادر، تولید می‌شود و پس از هر بار استخراج (دوشیدن) رادیوداروی تولید شده، رادیودارو به تناسب مقدار رادیونوکلید مادر باقی‌مانده، تولید می‌شود. وابستگی تولید به زمان، تأثیر متقابل متغیرها، تابع توزیع غیرخطی و بازتولید با توجه به مقدار باقی‌مانده‌ی رادیونوکلید مادر، باعث پیچیدگی فزاینده‌‌ی مدل‌های ریاضی شده و مدل‌سازی را در روش‌های متداول پژوهش در عملیات، مشکل می‌سازد. در مدل ارایه شده، عامل‌های پیش‌گفته مدل شده است و با توجه به ماهیت توسعه‌یابنده‌ی مدل‌های پویایی‌شناسی سیستم و امکان توسعه‌ی مرز مدل، امکان استفاده از مدل به عنوان مدل پایه در مدل‌سازی‌های پیچیده‌تر فراهم شده است. آزمون‌های بازتولید رفتار مدل و شرایط حدی پویایی‌شناسی سیستم، حکایت از اعتبار مدل ارایه شده دارد. در انتها چند سناریو برای افزایش بهره‌وری ارایه شده و بهره‌وری حاصل، به مقدار 25 درصد نسبت به شرایط متداول بهبود یافته است.

کلیدواژه‌ها

عنوان مقاله [English]

A System Dynamics Model for Inventory Decisions in Radionuclide Generators

نویسندگان [English]

  • M Ghadimi 1
  • M. A Shafia 2
  • M. S Pishvaee 2
  • B Fallahi 3

1 School of Industrial Engineering, Iran University of Science and Technology-Tehran-Iran

2 School of Industrial Engineering, Iran University of Science and Technology-Tehran-Iran

3 Research Center for Nuclear Medicine, Dr Shariati Hospital, Tehran University of Medical Sciences,Tehran-Iran

چکیده [English]

A system dynamics model for simulating radionuclide generators inventory management decisions is presented in this research report. The radiopharmaceutical is generated gradually from another radioactive element, so called mother element in the radionuclide generators, and after each extraction of the produced radioactive material, so called elution, the radiopharmaceutical is produced in the proportion of the residue from the mother element. Based on the remained mother element, production time dependence,  mutual interaction of variables, nonlinear distribution function, and reproduction, lead to the incremental complexity of the mathematical model and cause the model making affair harder in common place operation research methods. In the proposed model appeared in this report, the above-mentioned factors are modeled and due to the nature of system dynamics models' development and the possibility of developing the boundary of the model, the feasibility of utilizing the model, as a basic one, in more complex modeling affairs is presented. The model behavior re-production tests and the system dynamics' extreme conditions, illustrate the validity of the proposed model. Ultimately, in this paper, several scenarios for the productivity raise are illustrated and twenty five percent improvement has been shown compared to the conventional models.

کلیدواژه‌ها [English]

  • System Dynamics Model
  • Radiopharmaceutical
  • Radionuclide Generator
  • Technetium-99m
[1] S.G. Johnson, A Patient's Guide to Nuclear Medicine Procedures: English–Spanish, (2008) 169-169.
 [2] A. Dash, , FFR. Knapp Jr, M.R.A. Pillai, Industrial radionuclide generators: a potential step towards accelerating radiotracer investigations in industry, RSC Advances 3, 35 (2013) 14890-14909.
 [3] International Atomic Energy Agency, Technetium-99m Radiopharmaceuticals: Manufacture of Kits, Technical Reports Series, 466, IAEA, Vienna (2008).
 [4] R. Begum, S.K. Sahu, An EOQ model for deteriorating items quadratic demand and shortages, Int. J. Inventory Control Manage, 2, 2 (2012) 257-268.
 [5] J. Pahl, S. Voß, Integrating deterioration and lifetime constraints in production and supply chain planning: A survey, European Journal of Operational Research, 238, 3 (2014) 654-674.
 [6] F. Raafat, Survey of literature on continuously deteriorating inventory models, Journal of the Operational Research Society, 42, 1 (1991) 27-37.
 [7] M. Ghannadi Maraghe, M. Najafi, A. Majdabadi, K. Gharibadi, A. Gharib, Nuclear Energy, Taher, Tehran (2010).
 [8] S. K. Goyal, B.Ch. Giri, Recent trends in modeling of deteriorating inventory, European Journal of operational research, 134, 1 (2001) 1-16.
 [9] M. Bakker, J. Riezebos, R.H. Teunter, Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221, 2 (2012) 275-284.
[10] L. Janssen, Th. Claus, J. Sauer, Literature review of deteriorating inventory models by key topics from 2012 to 2015, International Journal of Production Economics, 182 (2016) 86-112.
 [11] P.M. Ghare, G.F. Schrader, A model for exponentially decaying inventory, Journal of industrial Engineering, 14, 5 (1963) 238-243.
 [12] R.P. Covert, G.C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE transactions, 5, 4 (1973) 323-326.
 [13] G.C. Philip, A generalized EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 6, 2 (1974) 159-162.
 [14] A.K. Jalan, R.R. Giri, K.S. Chaudhuri, EOQ model for items with Weibull distribution deterioration, shortages and trended demand, International Journal of Systems Science, 27, 9 (1996) 851-855.
 [15] T. Chakrabarty, B.C. Giri, K.S. Chaudhuri, An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip's model, Computers & Operations Research, 25, 7 (1998) 649-657.
 [16] J-W. Wu, Ch. Lin, B. Tan, W-Ch. Lee, An EOQ inventory model with ramp type demand rate for items with Weibull deterioration, International Journal of Information and Management Sciences, 10, 3 (1999) 41-51.
 [17] J-W. Wu, Ch. Lin, B. Tan, W-Ch. Lee, An EOQ inventory model with time-varying demand and Weibull deterioration with shortages, International Journal of systems science, 31, 6 (2000) 677-683.
 [18] K-S. Wu, An EOQ inventory model for items with Weibull distribution deterioration, ramp type demand rate and partial backlogging, Production Planning & Control, 12, 8 (2001) 787-793.
 [19] K.Sh. Wu, EOQ inventory model for items with Weibull distribution deterioration, time-varying demand and partial backlogging, International Journal of Systems Science, 33, 5 (2002) 323-329.
 [20] K-Sh. Wu, Deterministic inventory model for items with time varying demand, Weibull distribution deterioration and shortages, Yugoslav Journal of Operations Research, 12, 1 (2002) 61-72.
 [21] B.Ch. Giri, A.K. Jalan, K.S. Chaudhuri, Economic order quantity model with Weibull deterioration distribution, shortage and ramp-type demand, International Journal of Systems Science, 34, 4 (2003) 237-243.
 [22] K. Skouri, S. Papachristos, Four inventory models for deteriorating items with time varying demand and partial backlogging: A cost comparison, Optimal Control Applications and Methods, 24, 6 (2003) 315-330.
 [23] S.K. Ghosh, K.S. Chaudhuri, An order-level inventory model for a deteriorating item with Weibull distribution deterioration, time-quadratic demand and shortages, Advanced Modeling and Optimization, 6, 1 (2004) 21-35.
 [24] S.K. Ghosh, K.S. Chaudhuri, An EOQ model with a quadratic demand, time-proportional deterioration and shortages in all cycles, International Journal of Systems Science, 37, 10 (2006) 663-672.
 [25] S. Mukhopadhyay, R.N. Mukherjee, K.S. Chaudhuri, An EOQ model with two-parameter Weibull distribution deterioration and price-dependent demand, International Journal of Mathematical Education in Science and Technology, 36, 1 (2005) 25-33.
 [26] P. Shaohua Deng, Improved inventory models with ramp type demand and Weibull deterioration, International journal of information and management sciences, 16, 4 (2005) 79-86.
 [27] H.M. Wee, Sh.T. Law, J. Yu, Collaboration inventory system with limited resources and Weibull distribution deterioration, Industrial Engineering & Management Systems, 6,1 (2007) 1-10.
[28] A. Al-Khedhairi, L. Tadj, Optimal control of a production inventory system with Weibull distributed deterioration, Applied mathematical sciences, 1, 35 (2007) 1703-1714.
 [29] S.T. Lo, H.M. Wee, W.Ch. Huang, An integrated production-inventory model with imperfect production processes and Weibull distribution deterioration under inflation, International Journal of Production Economics, 106, 1 (2007) 248-260.
 [30] K. Skouri, I.K.S. Papachristos, I. Ganas, Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate, European Journal of Operational Research, 192, 1 (2009) 79-92.
 [31] T. Roy, K. S. Chaudhuri, An inventory model for Weibull distribution deterioration under price-dependent demand and partial backlogging with opportunity cost due to lost sales, International Journal of Modelling, Identification and Control, 13, 1-2 (2011) 56-66.
 [32] E.K. Muluneh, K. Srinivasa Rao, Optimal Pricing and Production Scheduling Policies for an Inventory Model with Stock Dependent Production and Weibull Decay, International Journal of Pure and Applied Sciences and Technology, 17, 1 (2013) 60.
 [33] A. Bhunia, A. Shaikh, A deterministic inventory model for deteriorating items with selling price dependent demand and three-parameter Weibull distributed deterioration, International Journal of Industrial Engineering Computations, 5, 3 (2014) 497-510.
 [34] S. Nahmias, Perishable inventory systems, 160, Springer Science & Business Media, (2011).
 [35] R.C. Baker, T.L. Urban, Deterministic fixed order-level inventory models: An application for replenishment of radioactive source material for irradiation sterilizers, European journal of operational research, 50, 3 (1991) 249-256.
 [36] C. Als, Optimizing patient throughput in nuclear medicine: a semi-quantitative tool for scheduling bone scintigraphy, European journal of nuclear medicine and molecular imaging, 34, 12 (2007) 2145-2146.
 [37] I. Akrotirianakis, A. Chakraborty, An optimization-based approach for delivering radio-pharmaceuticals to medical imaging centers.
 [38] H. Emmons, A replenishment model for radioactive nuclide generators, Management Science, 14, 5 (1968) 263-274.
 [39] P. Mella, Systems thinking: intelligence in action, 2, Springer Science & Business Media, (2012).
 [40] L.M. Filzen, L.R. Ellingson, A.M. Paulsen, J.C. Hung, Potential ways to address shortage situations of 99Mo/99mTc, Journal of nuclear medicine technology, 45, 1 (2017) 1-5.
 [41] National Academies of Sciences, Engineering, and Medicine. Molybdenum-99 for medical imaging, National Academies Press, (2016).
 [42] D.L. Bailey, J. L. Huum, A. Todd-Pokropek, A.V. Aswegen, Nuclear medicine physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency (IAEA), (2014).
 [43] R.G. Bennett, J.D. Christian, D.A. Petti, W.K. Terry, S.B. Grover, A System of 99 m Tc Production Based on Distributed Electron Accelerators and Thermal Separation, Nuclear Technology, 126, 1 (1999) 102-121.
 [44] B.G. Saha, Physics and radiobiology of nuclear medicine. Springer Science & Business Media, (2010).
 [45] J.D. Sterman, Business dynamics: systems thinking and modeling for a complex world, No. HD30. 2 S7835 2000. 2000.
 [46] M. Ahmad, Molybdenum-99/technetium-99m management: race against time, Annals of nuclear medicine, 25, 9 (2011) 677-679.