نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده‌ی مهندسی شیمی، پردیس دانشکده‌های فنی دانشگاه تهران، تهران ـ ایران

2 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

چکیده

 استخراج و انتقال توریم (IV) از محلول‌های نیتراتی با استفاده از غشای درون پلی‌مری پلی‌وینیل کلرید / دی (2- اتیل‌هگزیل) فسفریک اسید (D2EHPA/PVC) مورد بررسی قرار گرفت. اثر پارامترهای اصلی سیستم (یعنی، pH فاز دهنده، نوع و غلظت اسید در فاز پذیرنده، درصد D2EHPA در غشا، غلظت اولیه‌ی توریم (IV) در فاز دهنده) بر روی فرایندهای استخراج و انتقال، به روش ناپیوسته بررسی شد. بیش‌ترین مقدار ضریب انتقال توریم با استفاده از غشای تشکیل شده از %45 وزنی D2EHPA و %55 وزنی پی‌وی‌سی، محلول 112 میلی‌گرم بر لیتر توریم با 1.8 pH به عنوان فاز دهنده، محلول 3 مول بر لیتر سولفوریک اسید به عنوان فاز پذیرنده (محلول عریان‌ساز)، برابر با %94.81 به دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Extraction and Transport of Thorium(IV) by Polymer Inclusion Membranes Incorporating Di-(2-ethylhexyl) Phosporic Acid as the Carrier Extractant

نویسندگان [English]

  • H. R Arabi 1
  • S A. Milani 2
  • H Abolghasemi 1

1 Chemical Engineering Department, Tehran University-Tehran- Iran

چکیده [English]

Extraction and transport of thorium (IV) from nitrate solutions was investigated using  polymer inclusion membrane (PIM), based on di(-2-ethylhexyl) phosphoric acid (D2EHPA) and poly(vinyl chloride) (PVC). This study investigates the influence of the main system parameters (i.e., pH of donor phase, type and concentration of acid  in acceptor  phases, percentage of D2EHPA in the membrane, initial Th(IV) concentration) on the extraction and transport process by means of  batch method. The transport factor of Th(IV) as high as 94.81% were recorded using a membrane composed of 45% D2EHPA, and 55% PVC (w/w) from a solution containing 112 mg L-1 Th(IV) in 0.0158 mol L-1 HNO3 (pH 1.8) into a solution containing 3 mol L-1 H2SO4.

کلیدواژه‌ها [English]

  • Extraction and Transport of Th(IV)
  • Polymer Inclusion Membrane (PIM)
  • D2EHPA
  • PVC
[1] M. Fujita, Y. Ide, D. Sato, P.S. Kench, Y. Kuwahara, H. Yokoki, Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu, Chemosphere., 95 (2014) 628-634.
 [2] T.S. Anirudhan, S. Rijith, A. R. Tharun, Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equi-librium studies, Colloids and Surfaces A: Physicochemical and Engineering Aspects., 368 (2010)­13-22.
 [3] S.S. Ahluwalia, D. Goyal, ­Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresource Technology, 98 (2007) 2243-2257.
 [4] A. Mellah, S. Chegrouche, M. Barkat, The removal of uranium(VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations, Journal of Colloid and Interface Science, 296 (2007) 434-441.
 [5] A.M. St John, R.W. Cattrall, S.D. Kolev, Extraction of uranium(VI) from sulfate solutions using a polymer inclusion membrane containing di-(2-ethylhexyl) phosphoric acid, Journal of Membrane Science, 364­ (2010) 354–361.
 [6] S. Kolev, Y. Baba, R. Cattrall, T. Tasaki,
N. Pereira, J. Perera, G. Stevens, Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di(2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier., Talanta, 78, 3 (2009) 795-799.
 [7] C.V. Gherasim, G. Bourceanu,  D. Timpu, Experimental and modeling studies of lead (II) sorption onto a polyvinyl-chloride inclusion membrane, Chem. Eng. Journal, 172 (2011) 817-827.
 [8] A. St John, R. Cattrall, S. Kolev,­Transport and separation of uranium(VI) by a polymer inclusion membrane based on di-(2-ethylhexyl) phosphoric acid. Journal of Membrane Science, 409-410 (2012) 242-250.
 
[9] J. Konczyk, C. Kozlowski, W. Walkowiak, Removal Of Chromium(III) From Acidic Aqueous Solution By Polymer Inclusion Membranes With D2EHPA And Aliquat 336. Desalination, 263(1-3) (2010) 211-216.
 [10] C.V. Gherasim, G. Bourceanu, R.I. Olariu
C. Arsene, A Novel Polymer Inclusion Membrane Applied In Chromium (VI) Separation From Aqueous Solutions, Journal of Hazardous Materials 197 (2011) 244-253.
 [11] Ali Tor, Gulsin ArslanHarun MusluAhmet CeliktasYunus CengelogluMustafa Ersoz, Facilitated Transport Of Cr(III) Through Polymer Inclusion Membrane With Di(2-Ethylhexyl)phosphoric Acid (DEHPA), Journal of  Membrane Science 329 (1-2) (2009) 169-174.
 [12] N. Kavitha, K. Palanivelu, Recovery of copper(II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from E-waste, Journal of  membrane science, 415-416 (2012) 663-669.
 [13] C.A. Kozlowski, T. Girek, W.Walkowiak, J. J. Kozio, Application of hydrophobic β-cyclodextrin polymer in separation of metal ions by plasticized membranes, Separation and Purification Technology, 46 (2005) 136–144.
 [14] C.A. Kozlowski, J. Kozlowska, W. Pellowski, W. Walkowiak, Separation of cobalt-60, strontium-90, and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorous acids, Desalination,198 ( 2006) 141–148.
 [15] S. Kolev, Y. Baba, R. Cattrall, T. Tasaki, N. Pereira, J. Perera, G. Stevens, Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di(2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier, Talanta, 78, 3 (2009) 795-799.
 [16] L. Zhang, R. Cattrall, S. Kolev, The use of a polymer inclusion membrane in flow injection analysis for the on-line separation and determination of zinc, Talanta, 84, 5 (2011) 1278-1283.
 [17] C.V. Gherasim, G. Bourceanu, D. Timpu, Experimental and modeling studies of lead (II) sorption onto a polyvinyl-chloride inclusion membrane, Chem. Eng. Journal, 172 (2011) 817-827.
[18] M. Shirzad, S.A. Milani, H. Abolghasemi, Recovery and Transport of Cobalt(II) by a Polymer Inclusion Membrane Based on Dinonylnaphtalenesulfonic Acid, Journal of Separation Science and Engineering, 6, 1 (2014) 57-65.
 [19] B. Mahanty, P. K. MohapatraD. R. RautD. K. DasP. G. BehereM. Afzal, W. Verboom, Polymer Inclusion Membrane Containing a Tripodal Diglycolamide Ligand: Actinide Ion Uptake and Transport Studies, Ind. Eng. Chem. Res., 55, 7 (2016) 2202–2209.
 [20]      M. Eskandari Nasab, A. Sam, S.A. Milani, Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction, Hydrometallurgy, 106, 3–4 (2011) 141–147.
 [21]      Y. Yildiz, A. Manzak, B. Aydýn, O. Tutkun, preparation and application of polymer inclusion membranes (PIMs) including Aamine 336 for extraction of metals from an aqueous solution, Materiali in tehnologije / Materials and technology, 48, 5 (2014) 791–796.
 [22]      M. Xiaorong, W. Conghui, Z. Pan, X. Xiaoqiang, W. Lei, Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium, Frontiers of Environmental Science & Engineering, 11(6) (2017).
 [23]      E.L. Zebroski, H.W. Alter, F.K. Heumann; Thorium Complexes with Chloride, Fluoride, Nitrate, Phosphate and Sulfate; J. Am. Chem. Soc., 73 (1951) 5646-5650.
 [24]      B. Gupta, P. Malik, A. Deep, Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite, J. Radioanal. Nucl. Chem., 252 (2002) 451-456.
 [26]      S.A. Milani, M. Eskandari Nasab, Thermodynamics and mechanism of Th(IV) extraction from nitrate medium with cyanex 272 in kerosene, J. of  Nuclear Sci. and Tech., 74 (2016) 51-62.
[27]      R.K. Biswas, H.P. Singha, Solvent extraction of Cu(II) by purified Cyanex 272, Indian chem. Technol. (2007) 269-275.
 
[28]      N.E. El-Hefny, J.A. Daoud, Extraction and separation of thorium(IV) and praseodymium (III) with Cyanex 301 and Cyanex 302 from nitrate medium, J. Radioanal. Nucl. Chem., 261(2004) 357-363.
 [29]      O.Kebiche-SenhadjiL. MansouriS. TingryP. SetaM. Benamor, Facilitated Cd(II) Transport Across CTA Polymer Inclusion Membrane Using Anion (Aliquat 336) And Cation (D2EHPA) Metal Carriers, Journal of  Membrane Science, 310, 1-2 (2008) 438-445.
 [30]      C. Kozlowski, W. Walkowiak, W. Pellowski, Sorption and transport of  Cs-137, Sr-90 and Co-60 radionuclides by polymer inclusion membranes. Desalination, 242, 1-3 (2009) 29-37.
[31]      J. A. Riggs, B. D. Smith, Facilitated transport of small carbohydrates through plasticized cellulose triacetate membranes. Evidence for fixed-site jumping transport mechanism, J. Am. Chem. Soc., 119 (1997) 2765-2766.
 [32] S. Kislik, Liquid Membranes. Amsterdam: Elsevier, Print.melson, nathan. Sorption Of Thorium Onto Subsurface Geomedia. (2011): n. pag. Print.
 [33]      E.­R.­S. Miguel, M. Monroy-Barreto, J.­S. Aguilar, A.­L. Ocampo, J. Gyves, Structural effects on metal ion migration across polymer inclusion membranes: Dependence of membrane properties and transport profiles on the weight and volume fractions of the components, J. of Mem. Sci., 379 (2011) 416-425.