نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فرآوری مواد معدنی، دانشکده‌ی فنی و مهندسی، دانشگاه تربیت مدرس، صندوق پستی: 111-14115، تهران ـ ایران

2 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

(با عرض پوزش به دلیل عدم دسترسی به تایپ فرمول لطفا اصل چکیده را از متن پی دی اف مطالعه فرمایید)
هیدروکسید لایه­ای دوگانه­ی منیزیم- آلومینیم (3:1LDH Mg/Al;) با روش هم­رسوبی ساخته شد و برای جذب اورانیم از محلول­های آبی مورد استفاده قرار گرفت. اثر پارامترهای محیطی مختلفی مانند pH، غلظت اورانیم (VI)، زمان تماس و دما بر فرایند جذب مورد بررسی قرار گرفت. بیشینه ظرفیت جذب (1-mg g 99) در 3 pH رخ می­دهد و با افزایش pH به بالاتر از 5/6 به دلیل تشکیل کمپلکس­های کربناته­ی اورانیل کاهش می­یابد (1-mg g 69). پارامترهای ترمودینامکی (0ΔH، 0ΔS و 0ΔG) مشخص کرد که فرایند جذب اورانیم (VI) بر روی LDH گرماگیر و خود به خودی است. در pHهای پایین­تر از 5/6، سازوکار غالب جذب اورانیم احتمالاً تشکیل کمپلکس­های سطحی درون- کره­ای با گروه­های OH در سطح LDH است، در حالی که در pHهای بالاتر از 5/6 تشکیل کمپلکس­های سطحی برون- کره­ای و تبادل با یون­های -3NO در شبکه­ی LDH غالب است. براساس داده­های به دست آمده، LDH ماده­ای بسیار مناسب برای جذب یون­های اورانیم از محلول­های آبی در بازه­ی گسترده­ای از pH است.

تازه های تحقیق

[1] J. Lapka, A. Paulenova, M.Y. Alyapyshev, V. Babain, R. Herbst, J.D. Law, Extraction of uranium (VI) with diamides of dipicolinic acid from nitric acid solutions, Radiochimica Acta International journal for chemical aspects of nuclear science and technology, 97 (2009) 291-296.

 [2] T. Anirudhan, C. Bringle, S. Rijith, Removal of uranium (VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay, Journal of environmental radioactivity, 101 (2010) 267-276.

 [3] S. Xie, J. Yang, C. Chen, X. Zhang, Q. Wang, C. Zhang, Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii, Journal of Environmental Radioactivity, 99 (2008) 126-133.

 [4] A. Rout, K. Venkatesan, T. Srinivasan, P.V. Rao, Liquid–liquid extraction of Pu (IV), U (VI) and Am (III) using malonamide in room temperature ionic liquid as diluent, Journal of hazardous materials, 221 (2012) 62-67.

 [5] A. Mellah, S. Chegrouche, M. Barkat, The removal of uranium (VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations, Journal of colloid and interface science, 296 (2006) 434-441.

 [6] J.D. Prikryl, A. Jain, D.R. Turner, R.T. Pabalan, Uranium (VI) sorption behavior on silicate mineral mixtures, Journal of Contaminant Hydrology, 47 (2001) 241-253.

 [7] T.E. Payne, Uranium (VI) interactions with mineral surfaces: controlling factors and surface complexation modelling, 1999.

 [8] Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chemical reviews, 112 (2012) 4124-4155.

 [9] M. Othman, Z. Helwani, W. Fernando, Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review, Applied Organometallic Chemistry, 23 (2009) 335-346.

[10] Q. Tao, B.J. Reddy, H. He, R.L. Frost, P. Yuan, J. Zhu, Synthesis and infrared spectroscopic characterization of selected layered double hydroxides containing divalent Ni and Co, Materials Chemistry and Physics, 112 (2008) 869-875.

 [11] L. Lv, J. He, M. Wei, D. Evans, X. Duan, Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides, Journal of Hazardous Materials, 133 (2006) 119-128.

 [12] H.-W. Olfs, L. Torres-Dorante, R. Eckelt, H. Kosslick, Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): characterization of the structural phases and anion exchange properties, Applied clay science, 43 (2009) 459-464.

 [13] S.A. Moaty, A. Farghali, R. Khaled, Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA, Materials Science and Engineering: C, 68 (2016) 184-193.

 [14] L. Tan, Y. Wang, Q. Liu, J. Wang, X. Jing, L. Liu, J. Liu, D. Song, Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material, Chemical Engineering Journal, 259 (2015) 752-760.

 [15] L. Zhong, X. He, J. Qu, X. Li, Z. Lei, Q. Zhang, X. Liu, Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides, Journal of Solid State Chemistry, 245 (2017) 200-206.

 [16] R.-R. Shan, L.-G. Yan, K. Yang, S.-J. Yu, Y.-F. Hao, H.-Q. Yu, B. Du, Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution, Chemical Engineering Journal, 252 (2014) 38-46.

 [17] D. Zhao, S. Feng, H. Xuan, Y. Chen, Immobilization of uranium (VI) onto Mg2Al layered double hydroxide: role of key geochemical parameters, Journal of Radioanalytical and Nuclear Chemistry, 300 (2014) 1027-1037.

[18] Y. Zou, X. Wang, F. Wu, S. Yu, Y. Hu, W. Song, Y. Liu, H. Wang, T. Hayat, X. Wang, Controllable Synthesis of Ca-Mg-Al Layered Double Hydroxides and Calcined Layered Double Oxides for the Efficient Removal of U(VI) from Wastewater Solutions, ACS Sustainable Chemistry & Engineering, (2016).

 [19] Y. Li, J. Wang, Z. Li, Q. Liu, J. Liu, L. Liu, X. Zhang, J. Yu, Ultrasound assisted synthesis of Ca–Al hydrotalcite for U (VI) and Cr (VI) adsorption, Chemical engineering journal, 218 (2013) 295-302.

 [20] R. Zhao, C. Yin, H. Zhao, C. Liu, Synthesis, characterization, and application of hydotalcites in hydrodesulfurization of FCC gasoline, Fuel Processing Technology, 81 (2003) 201-209.

 [21] S. Savvin, Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements, Talanta, 8 (1961) 673-685.

 [22] A. Naghizadeh, S. Nasseri, A. Rashidi, R.R. Kalantary, R. Nabizadeh, A. Mahvi, Adsorption kinetics and thermodynamics of hydrophobic natural organic matter (NOM) removal from aqueous solution by multi-wall carbon nanotubes, Water Science and Technology: Water Supply, 13 (2013) 273-285.

 [23] H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, Journal of Hazardous Materials, 167 (2009) 141-147.

 [24] A. Singh, Advanced x-ray techniques in research and industry, IOS Press, 2005.

 [25] F.L. Theiss, Synthesis and Characterisation of Layered Double Hydroxides and their Application for Water Purification, in, Queensland University of Technology, 2012.

 [26] O.P. Ferreira, O.L. Alves, D.X. Gouveia, A.G. Souza Filho, J.A. de Paiva, J. Mendes Filho, Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds, Journal of Solid State Chemistry, 177 (2004) 3058-3069.

 [27] H. Yi, S. Zhao, X. Tang, P. Ning, H. Wang, D. He, Influence of calcination temperature on the hydrolysis of carbonyl sulfide over hydrotalcite-derived Zn–Ni–Al catalyst, Catalysis Communications, 12 (2011) 1492-1495.

 [28] G. Bernhard, G. Geipel, V. Brendler, H. Nitsche, Uranium speciation in waters of different uranium mining areas, Journal of Alloys and Compounds, 271–273 (1998) 201-205.

 [29] Z. Niu, Q. Fan, W. Wang, J. Xu, L. Chen, W. Wu, Effect of pH, ionic strength and humic acid on the sorption of uranium (VI) to attapulgite, Applied Radiation and Isotopes, 67 (2009) 1582-1590.

 

کلیدواژه‌ها

عنوان مقاله [English]

Kinetic, Thermodynamic and Adsorption Mechanism of Uranium (VI) Ions from Aqueous Solutions Using Mg/Al Layered Double Hydroxide

نویسندگان [English]

  • A Darban Khodadadi 1
  • H Seddighi 1
  • J Fasihi 2
  • M. J Koleini 1

چکیده [English]

Layered double hydroxide (Mg/Al; 3:1) was synthesized by co-precipitation method and used to adsorb uranium from aqueous solutions. Various environmental parameters such as contact time, pH, initial uranium concentration and temperature were investigated. The maximum adsorption capacity occurred at pH=3 (99 mg/g). The adsorption of U(VI) onto LDH decreased with increasing pH at pH>6.5, because of the formation uranyl carbonate complexes (69 mg/g). The thermodynamic parameters (i.e., ΔH0, ΔS0 and ΔG0) indicated that the adsorption process of U(VI) on LDH was an endothermic and spontaneous process. At pH<6.5, the probable mechanism of adsorption of U(VI) was governed by inner-sphere surface complexation with OH groups on LDH surfaces, while the dominant mechanism at pH>6.5 was inner-sphere surface complexation and ion exchange with NO. Based on the experimental results, LDH is a very suitable material for the removal of U(VI) ions from aqueous solutions in a wide range of pH.
 
 
 

کلیدواژه‌ها [English]

  • Mg/Al Layered Double Hydroxide
  • Uranium (VI)
  • Kinetic
  • Thermodynamic
[1] J. Lapka, A. Paulenova, M.Y. Alyapyshev, V. Babain, R. Herbst, J.D. Law, Extraction of uranium (VI) with diamides of dipicolinic acid from nitric acid solutions, Radiochimica Acta International journal for chemical aspects of nuclear science and technology, 97 (2009) 291-296.
 [2] T. Anirudhan, C. Bringle, S. Rijith, Removal of uranium (VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay, Journal of environmental radioactivity, 101 (2010) 267-276.
 [3] S. Xie, J. Yang, C. Chen, X. Zhang, Q. Wang, C. Zhang, Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii, Journal of Environmental Radioactivity, 99 (2008) 126-133.
 [4] A. Rout, K. Venkatesan, T. Srinivasan, P.V. Rao, Liquid–liquid extraction of Pu (IV), U (VI) and Am (III) using malonamide in room temperature ionic liquid as diluent, Journal of hazardous materials, 221 (2012) 62-67.
 [5] A. Mellah, S. Chegrouche, M. Barkat, The removal of uranium (VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations, Journal of colloid and interface science, 296 (2006) 434-441.
 [6] J.D. Prikryl, A. Jain, D.R. Turner, R.T. Pabalan, Uranium (VI) sorption behavior on silicate mineral mixtures, Journal of Contaminant Hydrology, 47 (2001) 241-253.
 [7] T.E. Payne, Uranium (VI) interactions with mineral surfaces: controlling factors and surface complexation modelling, 1999.
 [8] Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chemical reviews, 112 (2012) 4124-4155.
 [9] M. Othman, Z. Helwani, W. Fernando, Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review, Applied Organometallic Chemistry, 23 (2009) 335-346.
[10] Q. Tao, B.J. Reddy, H. He, R.L. Frost, P. Yuan, J. Zhu, Synthesis and infrared spectroscopic characterization of selected layered double hydroxides containing divalent Ni and Co, Materials Chemistry and Physics, 112 (2008) 869-875.
 [11] L. Lv, J. He, M. Wei, D. Evans, X. Duan, Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides, Journal of Hazardous Materials, 133 (2006) 119-128.
 [12] H.-W. Olfs, L. Torres-Dorante, R. Eckelt, H. Kosslick, Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): characterization of the structural phases and anion exchange properties, Applied clay science, 43 (2009) 459-464.
 [13] S.A. Moaty, A. Farghali, R. Khaled, Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA, Materials Science and Engineering: C, 68 (2016) 184-193.
 [14] L. Tan, Y. Wang, Q. Liu, J. Wang, X. Jing, L. Liu, J. Liu, D. Song, Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material, Chemical Engineering Journal, 259 (2015) 752-760.
 [15] L. Zhong, X. He, J. Qu, X. Li, Z. Lei, Q. Zhang, X. Liu, Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides, Journal of Solid State Chemistry, 245 (2017) 200-206.
 [16] R.-R. Shan, L.-G. Yan, K. Yang, S.-J. Yu, Y.-F. Hao, H.-Q. Yu, B. Du, Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution, Chemical Engineering Journal, 252 (2014) 38-46.
 [17] D. Zhao, S. Feng, H. Xuan, Y. Chen, Immobilization of uranium (VI) onto Mg2Al layered double hydroxide: role of key geochemical parameters, Journal of Radioanalytical and Nuclear Chemistry, 300 (2014) 1027-1037.
[18] Y. Zou, X. Wang, F. Wu, S. Yu, Y. Hu, W. Song, Y. Liu, H. Wang, T. Hayat, X. Wang, Controllable Synthesis of Ca-Mg-Al Layered Double Hydroxides and Calcined Layered Double Oxides for the Efficient Removal of U(VI) from Wastewater Solutions, ACS Sustainable Chemistry & Engineering, (2016).
 [19] Y. Li, J. Wang, Z. Li, Q. Liu, J. Liu, L. Liu, X. Zhang, J. Yu, Ultrasound assisted synthesis of Ca–Al hydrotalcite for U (VI) and Cr (VI) adsorption, Chemical engineering journal, 218 (2013) 295-302.
 [20] R. Zhao, C. Yin, H. Zhao, C. Liu, Synthesis, characterization, and application of hydotalcites in hydrodesulfurization of FCC gasoline, Fuel Processing Technology, 81 (2003) 201-209.
 [21] S. Savvin, Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements, Talanta, 8 (1961) 673-685.
 [22] A. Naghizadeh, S. Nasseri, A. Rashidi, R.R. Kalantary, R. Nabizadeh, A. Mahvi, Adsorption kinetics and thermodynamics of hydrophobic natural organic matter (NOM) removal from aqueous solution by multi-wall carbon nanotubes, Water Science and Technology: Water Supply, 13 (2013) 273-285.
 [23] H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, Journal of Hazardous Materials, 167 (2009) 141-147.
 [24] A. Singh, Advanced x-ray techniques in research and industry, IOS Press, 2005.
 [25] F.L. Theiss, Synthesis and Characterisation of Layered Double Hydroxides and their Application for Water Purification, in, Queensland University of Technology, 2012.
 [26] O.P. Ferreira, O.L. Alves, D.X. Gouveia, A.G. Souza Filho, J.A. de Paiva, J. Mendes Filho, Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds, Journal of Solid State Chemistry, 177 (2004) 3058-3069.
 [27] H. Yi, S. Zhao, X. Tang, P. Ning, H. Wang, D. He, Influence of calcination temperature on the hydrolysis of carbonyl sulfide over hydrotalcite-derived Zn–Ni–Al catalyst, Catalysis Communications, 12 (2011) 1492-1495.
 [28] G. Bernhard, G. Geipel, V. Brendler, H. Nitsche, Uranium speciation in waters of different uranium mining areas, Journal of Alloys and Compounds, 271–273 (1998) 201-205.
 [29] Z. Niu, Q. Fan, W. Wang, J. Xu, L. Chen, W. Wu, Effect of pH, ionic strength and humic acid on the sorption of uranium (VI) to attapulgite, Applied Radiation and Isotopes, 67 (2009) 1582-1590.