نوع مقاله : مقاله فنی

نویسندگان

پژوهشکده‌ی مواد، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 1589-81465، اصفهان ایران

چکیده

شیشه‌­ی سیلیکات سرب حاوی %70 وزنی سرب اکسید تحت عملیات حرارتی قرار گرفته در زمان و دماهای مختلف با مذاب شیشه­‌ی آهک سوددار معمولی، مورد مقایسه قرار گرفت. نمونه­‌هایی از پودر شیشه­‌ی سربی درون بوته­‌های آلومینایی به وزن 50 گرم در دماهای 900، 950، 1000، 1050 و C˚1100 و در زمان­‌های 15، 30 و 45 دقیقه تحت عملیات حرارتی قرار گرفتند. یک نمونه‌­ی پودر شیشه‌­ی معمولی در دمای C˚1400 در مدت 5 ساعت ذوب و درون قالب فولادی ریخته­‌گری شد. تأثیر گران­روی و چگالی مذاب بر روی سرعت صعود حباب درون مذاب­‌های شیشه‌­ی سربی و آهک سوددار مورد بحث قرار گرفت. با استفاده از اندازه­‌گیری­‌های چگالی کلی شیشه (حباب با شیشه)، چگالی شیشه­‌ی بدون حباب و میانگین اندازه‌­ی حباب، حجم کلی حباب و نحوه­‌ی تغییرات حجم و تعداد حباب در دما و زمان‌­های مختلف برای شیشه­‌ی سربی تعیین شد. در مذاب شیشه­‌های سربی، سرعت
حباب‌­زدایی متأثر از کاهش ضخامت لایه­‌ی پرحباب در بالای مذاب است. لذا سرعت کاهش تعداد حباب این لایه در زمان و دماهای مختلف به عنوان معیاری برای بررسی سینتیک
حباب‌­زدایی مورد بررسی قرار گرفت.

تازه های تحقیق

  1. R.B. Jucha, D. Powers, T. Mcneil, R.S. Subramanian, R. Cole, Bubble rise in glassmelts, J. Am. Ceram. Soc., 65 (1982) 289-292.

 2.   M.C. Weinberg, P.I.K. Onorato, D.R. Uhlmann, Behavior of bubbles in glassmelts: I, Dissolution of a stationary bubble containing a single gas, J. Am. Ceram. Soc., 63 (1980) 175-180.

 3.   M.C. Weinberg, P.I.K. Onorato, D.R. Uhlmann, Behavior of bubbles in glassmelts: II, Dissolution of a stationary bubble containing a diffusing and a nondiffusing gas, J. Am. Ceram. Soc., 63 (1980) 435-438.

 4.   P.I.K. Onorato, M.C. Weinberg, D.R. Uhlmann, Behavior of bubbles in glassmelts: III, Dissolution and growth of a rising bubble containing a single gas, J. Am. Ceram. Soc., 64 (1981) 676-682.

 5.   Kang-Wen K. Li, A. Schneider, Rise velocities of large bubbles in viscous Newtonian liquids, J. Am. Ceram. Soc., 76 (1993) 241-244.

 6.   H.Y. Kwak and K.M. Kang, Gaseous bubble nucleation under shear flow, International Journal of Heat and Mass Transfer, 52 (2009) 4929-4937.

 7.   N.G. Lensky, R.W. Niebo, J.R. Holloway, V. Lyakhovsky, O. Navon, Bubble nucleation as a trigger for xenolith entrapment in mantle melts, Earth and Planetary Science Letters, 245 (2006) 278-288.

 8.   L. Pilon, A.G. Fedorov, D. Ramkrishna, R. Viskanta, Bubble transport in three- dimensional laminar gravity driven flow- mathematical formulation, J. Non-Crystal. Solids, 336 (2004) 71-83.

  1. L. Pilon and R. Viskanta, Bubble transport in three-dimensional laminar gravity-driven flow- numerical results, J. Non-Crystal. Solids, 336 (2004) 84-95.

 10.L. Nemec, Refining in the glass melting process, J. Am. Ceram. Soc., 60 (1977) 436-440.

 11.M.C. Weinberg, R.S. Sabramanian, Dissolution of multicomponent bubbles, J. Am. Ceram. Soc., 63 (1980) 527-521.

 12.E.J. Hornyak, M.C. Weinberg, Velocity of a freely rising gas bubble in a soda-lime-silicate glass melt, Communication of Am. Ceram. Soc., (1984) 244-246.

 13.L. Nemec and J. Ullrich, Calculations of interactions of gas bubbles with glass liquids containing sulphates, J. Non-Crystal. Solids, 238 (1998) 98-114.

 14.S. Kentish, J. Lee, M. Davidson, M. Ashokkumar, The dissolution of a stationary spherical bubble beneath a flat plate, Chemical Engineering Science, 61 (2006) 7697-7705.

 15.H. Yoshikawa, H. Miura, Y. Kawase, Dissolution of bubbles in glassmelts with equilibrium redox reactions: approximations for a moving bubbles boundary, J. Material Science, 33 (1998) 2701-2707.

 16.W. Vogel, Chemistry of glass, Book, by the American Ceramic Society (1985) 38.

کلیدواژه‌ها

عنوان مقاله [English]

The Effects of Viscosity and Density on the Bubble Removing from Lead and Soda-Lime Glass Melts

نویسندگان [English]

  • R. A Rahimi
  • A Hamidi

چکیده [English]

In this work, the bubble removing from lead silicate glasses containing 70% PbO in different time durations and temperature conditions is compared with that of the ordinary soda-lime glass. Batches of lead glass powders weighing 50gr inside alumina crucibles were heat treated at 900, 950, 1000, 1050 and 1100˚C for time durations of 15, 30 and 45 minutes. A sample of soda-lime glass was heat treated at 1400˚C for 5 hours and poured in a steel mold. The effect of viscosity and density of melt on the rate of bubble ascending inside lead silicate and soda-lime silicate glass melt are discussed. By using the data of the total density of glass (glass containing bubble), the density of glass without bubble and the mean bubble size measurements, the total volume of the bubble and the variation of the volume and the number of the bubbles at different time durations and temperatures were determined. The rate of bubble removing in lead silicate glass is affected by the thickness reduction of the bubbly layer on the surface of the melt, then the bubble number reduction rate of the bubbly layer at different time and temperatures was considered as the kinetics of bubble removing.

کلیدواژه‌ها [English]

  • Bubble Removing
  • Lead Glass Melt
  • Soda-Lime Glass
  1. R.B. Jucha, D. Powers, T. Mcneil, R.S. Subramanian, R. Cole, Bubble rise in glassmelts, J. Am. Ceram. Soc., 65 (1982) 289-292.

 2.   M.C. Weinberg, P.I.K. Onorato, D.R. Uhlmann, Behavior of bubbles in glassmelts: I, Dissolution of a stationary bubble containing a single gas, J. Am. Ceram. Soc., 63 (1980) 175-180.

 3.   M.C. Weinberg, P.I.K. Onorato, D.R. Uhlmann, Behavior of bubbles in glassmelts: II, Dissolution of a stationary bubble containing a diffusing and a nondiffusing gas, J. Am. Ceram. Soc., 63 (1980) 435-438.

 4.   P.I.K. Onorato, M.C. Weinberg, D.R. Uhlmann, Behavior of bubbles in glassmelts: III, Dissolution and growth of a rising bubble containing a single gas, J. Am. Ceram. Soc., 64 (1981) 676-682.

 5.   Kang-Wen K. Li, A. Schneider, Rise velocities of large bubbles in viscous Newtonian liquids, J. Am. Ceram. Soc., 76 (1993) 241-244.

 6.   H.Y. Kwak and K.M. Kang, Gaseous bubble nucleation under shear flow, International Journal of Heat and Mass Transfer, 52 (2009) 4929-4937.

 7.   N.G. Lensky, R.W. Niebo, J.R. Holloway, V. Lyakhovsky, O. Navon, Bubble nucleation as a trigger for xenolith entrapment in mantle melts, Earth and Planetary Science Letters, 245 (2006) 278-288.

 8.   L. Pilon, A.G. Fedorov, D. Ramkrishna, R. Viskanta, Bubble transport in three- dimensional laminar gravity driven flow- mathematical formulation, J. Non-Crystal. Solids, 336 (2004) 71-83.

  1. L. Pilon and R. Viskanta, Bubble transport in three-dimensional laminar gravity-driven flow- numerical results, J. Non-Crystal. Solids, 336 (2004) 84-95.

 10.L. Nemec, Refining in the glass melting process, J. Am. Ceram. Soc., 60 (1977) 436-440.

 11.M.C. Weinberg, R.S. Sabramanian, Dissolution of multicomponent bubbles, J. Am. Ceram. Soc., 63 (1980) 527-521.

 12.E.J. Hornyak, M.C. Weinberg, Velocity of a freely rising gas bubble in a soda-lime-silicate glass melt, Communication of Am. Ceram. Soc., (1984) 244-246.

 13.L. Nemec and J. Ullrich, Calculations of interactions of gas bubbles with glass liquids containing sulphates, J. Non-Crystal. Solids, 238 (1998) 98-114.

 14.S. Kentish, J. Lee, M. Davidson, M. Ashokkumar, The dissolution of a stationary spherical bubble beneath a flat plate, Chemical Engineering Science, 61 (2006) 7697-7705.

 15.H. Yoshikawa, H. Miura, Y. Kawase, Dissolution of bubbles in glassmelts with equilibrium redox reactions: approximations for a moving bubbles boundary, J. Material Science, 33 (1998) 2701-2707.

 16.W. Vogel, Chemistry of glass, Book, by the American Ceramic Society (1985) 38.