نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده‌ چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

ایتریم- 90 به عنوان یک بتاگسیل با انرژی بیشینه­‌ی 2.3MeV  و به واسطه­ی عمر طولانی مادر- هسته‌­اش (استرانسیم- 90)، یکی از مهم­ترین رادیونوکلیدهای مورد استفاده در پزشکی هسته‌­ای است. استفاده از ایتریم به عنوان یک رادیودارو، مستلزم به کارگیری یک روش سریع و انتخابی برای جداسازی آن از مادر- هسته­‌اش است. در این مقاله، رفتار جذبی یون­‌های ایتریم (III) و استرانسیم (II) بر روی رزین XAD-4 آغشته به بیس (2-اتیل هگزیل) فسفات (HDEHP) در دو حالت پیوسته و ناپیوسته مورد بررسی قرار گرفته است. اثر زمان استخراج در محیط­‌های مختلف، و اثر غلظت نیتریک و هیدروکلریک اسید بر میزان جذب و واجذب این یون­‌ها بررسی شد. مدل­‌های مختلف سینتیکی نیز به منظور تعیین سازوکار جذب ایتریم مورد بررسی قرار گرفت. برای جداسازی ایتریم از استرانسیم در محیط نیتریک اسید M0.05، محلول شامل 5 میلی­گرم برلیتر ایتریم و 1000میلی­گرم بر لیتر استرانسیم با آهنگ ml/min1 از ستون کروماتوگرافی عبور داده شد. تحت این شرایط در حالی که ایتریم بر روی رزین نگه داشته شده بود، استرانسیم از ستون خارج و نسبت Y/Sr در محصول شویش برابر 200 محاسبه شد. از نتایج حاصل می­توان در جداسازی ایتریم- 90 از استرانسیم- 90 استفاده کرد.

تازه های تحقیق

  1. Thomas E. Witzig, Leo I. Gordon, Fernando Cabanillas, Myron S. Czuczman, Randomized controlled trial of Yttrium-90–Labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-hodgkin’s lymphoma, J. Clinical Oncology, 20 (10) (2002) 2453-2463.

 2.   D.F. Peppard, G.W. Mason, S.W. Moline, The use of dioctyl phosphoric acid extraction in the isolation of carrier-free 90Y, 140La, 144Ce, 143Pr, and 144Pr, J. Inorg. Nucl. Chem, 5 (1957) 141-146.

 3.   M.Y. Mirza, A new method for the carrier-free production of 90Y from 90Sr-90Y mixture and 89Sr from neutron-irradiated Y2O3, J. Analytica Chimica Acta, 40 (1968) 229–233.

 4.   G. Barrio, J.A. Osso Junior, Development of 90Sr-90Y generators using the cation exchange technique, J. Nuclear Medicine and Molecular Imaging, 54 (2010) 73-74.

 5.   T. Kawashima, Separation of carrier-free 90Y from 90Sr by cation exchange in a methanol-ammonium acetate medium, J. Appl. Radiation Isotopes 20 (1969) 806-808.

 6.   J. Korkisch, Handbook of ion exchange resins, crc Press, Boca Raton (1989).

 7.   Y. Koda, Separation of pure 90Y from a 90Sr-90Y mixture by co-precipitation with ferric hydroxide, J. Inorganic and Nuclear Chemistry, 25(6) (1963) 733-734.

 8.   S. Dutta, P.K. Mohapatra, D.R. Raut, V.K. Manchanda, Chromatographic separation of carrier free 90Y from 90Sr using a diglycolamide based resin for possible pharmaceutical applications, J. Chromatogr. A, 1218(37) (2011) 6483-8.

  1. G.E. Kodina, G.V. Korpusov, A.T. Filyanin, Production of high-purity 90Y on specially developed centrifugal semicounterflow extractors, 44(1) (2002) 62-66.

 10. A. Warshawsky, Extraction with solvent-impregnated resin, Ion Exchange and Solvent Extraction, 18 (1981) 229.

 11. G.A. Juang, Synthetic polymers for accumulation organic compounds from water, Organic Pollutants in Water. J. Sampling Analysis and Toxicity, 214 (1987) 201.

 12. J. Kraikaew, W. Srinuttrakul, C. Chayavadhanakur, Solvent extraction study of rare earths from nitrate medium by the mixtures of TBP and D2EHPA in kerosene, J. Metals, Materials and Minerals, 15 (2005) 89-95.

 13. L. Liberti, R. Passino, Ion-exchange and solvent extraction, 7(3) (1977).

 14. F. Helfferich, Ion-exchange, McGraw–Hill, New York, USA (1962).

 15. V.M. Bhandari, V.A. Juvekar, S.R. Pathwardhan, Modified shrinking core model for reversible sorption on ion-exchange resins, J. Sep. Sci. Technol. 27 (1992) 1043-1064.

 16. R.S. Juang, H.C. Lin, Metal sorption with extractant-impregnated macroporous resins, Particle Diffusion Kinetics, J. Chem. Tech. Biotechnol. 62 (1995) 132-140.

 

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of the Adsorption Behavior of Strontium (II) and Yttrium (III) on the Impregnated XAD-4 Resin with HDEHP in Acidic Media

نویسندگان [English]

  • A.R. Khanchi
  • A Pourmatin
  • N Akbari
  • M.H. Mojarabi
  • A Abhari

چکیده [English]

Yttrium-90 as a β emitting with the maximum energy of 2.3MeV, and due to the long half-life of its parent-strontium-90, is considered as one of the most important radionuclides in nuclear medicine. In this context, a highly selective and rapid method for the separation of 90Y from its parent is required for its use in nuclear medicine. In this study, adsorption behavior of yttrium (III) and strontium (II) ions were studied on the Amberlite XAD-4 resin impregnated with (2-ethylhexyl) phosphate (HDEHP) by batch and continuous methods. The effects of extraction time in different media, nitric acid and hydrochloric acid concentrations on the sorption and desorption of ions were investigated. Different kinetic models were examined to determine the adsorption mechanism of yttrium. For the separation of yttrium from strontium in 0.05M nitric acid media, a solution containing 5ppm yttrium and 1000ppm strontium was passed with a flow rate of 1ml/min through a chromatography column. In this condition, while yttrium was retained by the resin, strontium passed through the column. A ratio of 200 was calculated for Y/Sr in eluate. The results of the present experiment can be used for separation of yttrium-90 from strontium-90.
 

کلیدواژه‌ها [English]

  • XAD-4 Resin
  • HDEHP
  • Yttrium
  • Strontium
  1. Thomas E. Witzig, Leo I. Gordon, Fernando Cabanillas, Myron S. Czuczman, Randomized controlled trial of Yttrium-90–Labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-hodgkin’s lymphoma, J. Clinical Oncology, 20 (10) (2002) 2453-2463.

 2.   D.F. Peppard, G.W. Mason, S.W. Moline, The use of dioctyl phosphoric acid extraction in the isolation of carrier-free 90Y, 140La, 144Ce, 143Pr, and 144Pr, J. Inorg. Nucl. Chem, 5 (1957) 141-146.

 3.   M.Y. Mirza, A new method for the carrier-free production of 90Y from 90Sr-90Y mixture and 89Sr from neutron-irradiated Y2O3, J. Analytica Chimica Acta, 40 (1968) 229–233.

 4.   G. Barrio, J.A. Osso Junior, Development of 90Sr-90Y generators using the cation exchange technique, J. Nuclear Medicine and Molecular Imaging, 54 (2010) 73-74.

 5.   T. Kawashima, Separation of carrier-free 90Y from 90Sr by cation exchange in a methanol-ammonium acetate medium, J. Appl. Radiation Isotopes 20 (1969) 806-808.

 6.   J. Korkisch, Handbook of ion exchange resins, crc Press, Boca Raton (1989).

 7.   Y. Koda, Separation of pure 90Y from a 90Sr-90Y mixture by co-precipitation with ferric hydroxide, J. Inorganic and Nuclear Chemistry, 25(6) (1963) 733-734.

 8.   S. Dutta, P.K. Mohapatra, D.R. Raut, V.K. Manchanda, Chromatographic separation of carrier free 90Y from 90Sr using a diglycolamide based resin for possible pharmaceutical applications, J. Chromatogr. A, 1218(37) (2011) 6483-8.

  1. G.E. Kodina, G.V. Korpusov, A.T. Filyanin, Production of high-purity 90Y on specially developed centrifugal semicounterflow extractors, 44(1) (2002) 62-66.

 10. A. Warshawsky, Extraction with solvent-impregnated resin, Ion Exchange and Solvent Extraction, 18 (1981) 229.

 11. G.A. Juang, Synthetic polymers for accumulation organic compounds from water, Organic Pollutants in Water. J. Sampling Analysis and Toxicity, 214 (1987) 201.

 12. J. Kraikaew, W. Srinuttrakul, C. Chayavadhanakur, Solvent extraction study of rare earths from nitrate medium by the mixtures of TBP and D2EHPA in kerosene, J. Metals, Materials and Minerals, 15 (2005) 89-95.

 13. L. Liberti, R. Passino, Ion-exchange and solvent extraction, 7(3) (1977).

 14. F. Helfferich, Ion-exchange, McGraw–Hill, New York, USA (1962).

 15. V.M. Bhandari, V.A. Juvekar, S.R. Pathwardhan, Modified shrinking core model for reversible sorption on ion-exchange resins, J. Sep. Sci. Technol. 27 (1992) 1043-1064.

 16. R.S. Juang, H.C. Lin, Metal sorption with extractant-impregnated macroporous resins, Particle Diffusion Kinetics, J. Chem. Tech. Biotechnol. 62 (1995) 132-140.