نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 51113-14399، تهران ـ ایران

2 گروه فیزیک، دانشکده‌ی علوم پایه، دانشگاه قم، صندوق پستی: 3716146611، قم ـ ایران

چکیده

امروزه استفاده از ابررساناهای دمای بالا به­دلیل دارا بودن چگالی جریان بحرانی بالا در حضور میدان­های مغناطیسی قوی، در دستگاه­های توکامک و تصویرگیری تشدید مغناطیسی پیشنهاد می­شود. در این مطالعه، برای نمونه­ی خاصی از نوار چندسازه­ی /AgMg2223Bi-، وابستگی به جریان بحرانی در دما و شعاع­های انحنای مختلف به­دست آمد. هم‌چنین، با استفاده از این نوار ابررسانا، یک پیچه­ی صفحه­ای D شکل طراحی، ساخته و مشخصه­های اصلی آن در دمای نیتروژن مایع گزارش و با نتیجه­های حاصل از سیم مقایسه شد. رفتار پسماند به صورت تابعی از نرخ جریان در طی بالا رفتن و پایین آمدن آن، روی منحنی ولتاژ- جریان در دمای نیتروژن مایع بررسی شد. سرانجام با در نظر گرفتن یک مدار الکتریکی معادل برای پیچه­ی ابررسانای دما بالا، تحلیلی از ولتاژ ایجاد شده در شرایط تغییر جریان ارایه شد. سپس بیشینه­ی میدان تولید شده در این آهن­ربا­ و کمینه­ی انرژی فرونشانی آن برای جریان کاری A 37 در دمای بخارهای نیتروژن به­دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Design, Manufacture and Characterization of High Temperature Superconducting D-Shaped Coil

نویسندگان [English]

  • N Abdollahi Ghahi 1
  • N Alinejad 1
  • M Abdollahi Dargah 1
  • J Mahmoodi 2

چکیده [English]

Nowadays, high temperature superconductors have been proposed for high current density at high magnetic field applications such as tokamak and MRI machines. In this paper, dependency of critical current on magnetic field, temperature and different curvature radius for specific sample of Bi-2223/AgMg composite tape are obtained. By using this superconducting tape, a D-shaped pancake coil is designed and built. The coil characteristics in the liquid nitrogen temperature are reported and compared with the results of the tape. Furthermore, we have obtained the portion effects of the bending and self-field in the critical current drop. Hysteresis behavior as a function of current rate during ramp up and ramp down cases on the voltage current curve at liquid nitrogen temperature has been investigated. Then by considering equivalent circuit for high temperature superconducting magnet, the behavior of the voltage in terms of current is analyzed. Maximum field generated in this magnet is obtained and quench minimum energy is measured for working current of 37 A at nitrogen vapor.

کلیدواژه‌ها [English]

  • Bi-2223/AgMg
  • Characterization
  • D-Shaped Coil
  • Hysteresis Behavior
[1] K. Sato, S. Kobayashi, T. Nakashima, Present status and future perspective of Bismuth-Based High-Temperature superconducting wires realizing application systems, J. Appl. Phys., 51 (2012) 010006.
 
[2] T. Masuda, H. Yumura, M. Watanabe, H. Takigawa, Y. Ashibe, C. Suzawa, H. Ito, M. Hirose, K. Sato, S. Isojima, C. Weber, R. Lee, J. Moscovic, Fabrication and installation results for Albany HTS cable, IEEE Trans. Appl. Supercond., 17 (2007) 1648-1651.
 
[3] T. Masuda, H. Yumura, M. Ohya, T. Kikuta, M. Hirose, S. Honjo, T. Mimura, Y. Kito, K. Yamamoto, M. Ikeuchi, R. Ohno, A new HTS cable project in Japan, IEEE Trans. Appl. Supercond., 19 (2009) 1735-1739.
 
[4] H. Kutami, T. Hayashida, S. Hanyu, C. Tashita, M. Igarashi, H. Fuji, T. Saitoh, Progress in research and development on long length coated conductors in Fujikura, Physica C: Super-conductivity, 469 (2009) 1290-1293.
 
[5] J. Schwartz, T. Effio, X. Liu, Q.V. Le, A.L. Mbaruku, H.J. Schneider-Muntau, T. Shen, H. Song, U.P. Trociewitz, X. Wang, H.W. Weijers, High field superconducting solenoids via high temperature superconductors, IEEE Trans-actions on Applied Superconductivity, 18 (2008) 70-81.
 
[6] W. Yuanxi, Overview of steady state operation of HT-7 and present status of the HT-7U project Nucl. Fusion, 40 (2000) 1057–68.
 
[7] G.S. Lee, J. Kim, S.M. Hwang, C.S. Chang, H.Y. Chang, M.H. Cho, B.H. Choi, K. Kim, S. Jardin, G.H. Neilson, H.K. Park, The design of the KSTAR tokamak, Fusion Engineering and Design, 46 (1999) 405-411.
 
[8] B. Turck, TORE SUPRA: a tokamak with superconducting toroidal field coils-status report after the first plasmas, IEEE Trans. Magn., 25 (1989) 1473–80.
 
[9] T. Ando, S. Nishio, Design of the TF coil for a tokamak fusion power reactor with ybco tape superconductors, In 21st IEEE/NPS Symposium on Fusion Engineering SOFE, 05 (2005) 1-4.
 
 
[10] D. Maisonnier, I. Cook, P. Sardain, R. Andreani, L. Di Pace, R. Forrest, L. Giancarli, S. Hermsmeyer, P. Norajitra, N. Taylor, D. Ward, A conceptual study of commercial fusion power plants, Final Report of the European Fusion Power Plant Conceptual Study, (2005).
 
[11] K. Kaiho, K. Ohara, K. Agatsuma, T. Ohnishi, Discussion on the discrete Dshaped toroidal magnet, Electrical engineering in Japan, 108 (1988) 36-45.
 
[12]­­ M. Tinkham, Introduction to superconductivity, 2d ed., McGraw-Hill, (1996).
 
[13] T. Sheahen, Introduction to high temperature superconductivity, Kluwer Academic Publishers, (2002).
 
[14] A. Korpela, Geometry optimization and coil protection of conduction-cooled LTS and HTS magnets, Tampere University of Technology, Finland, (2003).
 
[15] K. Osamuraet, S. Machiya, S. Ochiai, G. Osabe, K. Yamazaki, J. Fujikami, High strength/high strain tolerance DI-BSCCO tapes by means of pre-tensioned lamination technique, IEEE Trans. Appl. Supercond., 23 (2013) 6400504.
 
[16] M. Breschi, M. Casali, N. Nayeli, C. Corona, P. Luigi Ribani, F. Trillaud, G. Nishijima, Dependence of critical current and quench energy of BSCCO-2223 tapes on bending diameter, IEEE Trans. Appl. Supercond., 26 (2016) 1-5.
 
[17] D.T. Ryan, Critical current degradation in HTS wires due to cyclic mechanical strain, IEEE Trans. Appl. Supercond., 15 (2005) 3684–3687.
 
[18] J.P. Voccio, O.O. Ige, S.J. Young, C.C. Duchaine, The effect of longitudinal compressive strain on critical current in HTS tapes, IEEE Trans. Appl. Supercond., 11 (2001) 3070–3073.
 
[19] G. Nishijima, H. Kitaguchi, Y. Tshuchiya, T. Nishimura, T. Kato, Transport critical current measurement apparatus using liquid nitrogen cooled high-Tc superconducting magnet with variable temperature insert, Review of Scientific Instruments, 84 (2013) 015113.
 
[20] D.M. Taylor, P.H. Damian, Relationship between the n-value and critical current in Nb3Sn superconducting wires exhibiting intrinsic and extrinsic behavior, Superconductor Science and Technology, 18 (2005) S297.
 
[21] R.W. Moses, W.C. Young, Analytic expressions for magnetic forces on sectored toroidal coils, In sixth symposium on engineering problems of fusion research, (1976).
 
[22] F. Trillaud, H. Palanki, U.P. Trociewitz, S.H. Thompson, H.W. Weijers, J. Schwartz, Normal zone propagation experiments on HTS composite conductors, Cryogenics, 43, 3 (2003) 271-279.
 
[23] F.W. Grover, Tables for the calculation of the inductance of circular coils of rectangular cross-section, Journal of the Franklin Institute, 195, 2 (1923) 246-248.
 
[24] F.W. Grover, Inductance calculations: working formulas and tables, Courier Corporation, (2004).
 
[25] J.D. Larson III, R. Mitchell, J.A. Good, J. Lopez, AC loss in Nb3Sn superconducting cable-mechanisms and measurement, A/M Lab. Longview USA, HPL-95-119 (1995).