نوع مقاله : مقاله پژوهشی

نویسندگان

1 . دانشکده‌ی مهندسی شیمی، دانشگاه تهران، صندوق پستی: 4563-11155، تهران ـ ایران

2 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

3 دانشکده‌ی مهندسی شیمی، دانشگاه تهران، صندوق پستی: 4563-11155، تهران ـ ایران

چکیده

توانایی جلبک سیستوسیرا اندیکای اصلاح ‌شده به روش زانتاسیون، در جذب زیستی یون­های توریم (IV) از محلول‌های آبی در روش ناپیوسته بررسی شد. اثر سه متغیر مستقل فرایند شامل pH (2-6)، غلظت اولیه­ی یون فلزی (1-mg L 50 تا 1-mg L 250) و مقدار جاذب
 (0.5 g L-1تا 2.5 g L-1) با استفاده از روش سطح پاسخ (RSM) براساس طرح مرکب مرکزی (CCD) مورد ارزیابی قرار گرفت. اعتبار مدل درجه­ی دوم با استفاده از تحلیل واریانس مانند مقدار کم‌ ارزش-P، مقدار بالای ارزش-F و ضریب رگرسیون بالا تأیید شد. نتیجه­های بهینه‌سازی نشان داد که میزان جذب توریم (IV) تحت شرایط بهینه (pH=3.31، غلظت اولیه­ی 1- mg L­250 و مقدار جاذب 0.5 g L-1) 230.628 mg g-1  است. داده­های مدل‌سازی نشان داد که داده‌های تجربی سرعت جذب توریم توسط مدل سینتیکی شبه مرتبه­ی دوم بهتر برازش می‌شوند و هم‌چنین هم­دمای لانگمیر داده‌های تجربی تعادلی جذب را به‌خوبی توصیف می‌کند. حداکثر ظرفیت جذب توریم به‌وسیله­ی هم­دمای لانگمیر329.90 mg g-1  تخمین زده شد. علاوه بر این، مشخصه­های سطح جلبک و سازوکار جذب با استفاده از تحلیل تبدیل فوریه زیرقرمز (FTIR) بررسی شد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Thorium Biosorption from Aqueous Solutions by Chemically Modified Brown Algae Cystoseira Indica using Xanthation Method

نویسندگان [English]

  • M Mofres 1
  • A Keshtkar 2
  • M.A Moosavian 3

چکیده [English]

In this work, the ability of the modified Cystoseira indica algae by the Xanthation method has been investigated for the biosorption of Th (IV) ions from aqueous solution in the batch mode. The effects of the three process independent variables including pH(2–6), biomass dosage (0.5 g L-1 – 2.5 g L-1) and initial metal concentration(50 mg L-1 – 250 mg L-1) were investigated using the response surface methodology (RSM) based on the central composite design (CCD). The accuracy of the model was confirmed by ANOVA such as low p-value, high F-value and Regression. The results of the optimization showed that the biosorption capacity of Th(IV) under the optimal conditions (pH=3.31, initial concentration 250 mg L-1, and biosorbent concentration 0.5 g L-1) will be 230.628 mg g-1. The results of the modeling showed that the experimental data of biosorption rate of thorium were better fitted by the pseudo second-order kinetic model, and also the Langmuir isotherm describes the experimental data of biosorption quite well. The maximum biosorption capacity of thorium was estimated to be 329.90 mg g-1 by the Langmuir isotherm. In addition, the specifications surface of algae and mechanism of biosorption were investigated using the Fourier transform infrared (FTIR) analysis.

کلیدواژه‌ها [English]

  • Biosorption
  • Thorium
  • Cystoseira Indica
  • Xanthation
  • Response Surface Methodology (RSM)
  • Central Composite Design (CCD)
 
[1] G.M. Gadd, C. White, Uptake and intracellular compartmentation of thorium in Saccharomyces cerevisiae, Environ. Pollut. 61 (1989) 187-197.
 
[2] M. Riazi, A.R. Keshtkar, M.A. Moosavian, Batch and continuous fixed-bed column biosorption of thorium (IV) from aqueous solutions: equilibrium and dynamic modeling, J. Radioanal. Nucl. Chem. 301 (2014) 493-503.
 
[3] T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies, Colloid. Surfaces A. 368 (2010) 13-22.
 
[4] K.C. Bhainsa, S.F. D'Souza, Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass, J. Hazard. Mater., 165 (2009) 670-676.
 
[5] C. Qing, Study on the adsorption of lanthanum (III) from aqueous solution by bamboo charcoal, J. Rare Earth. 28 (2010) 125-131.
 
[6] M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, A. Khosravi, Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies, Res. Chem. Intermediat., 41 (2015) 559-573.
 
[7] N. Das, D. Das, Recovery of rare earth metals through biosorption: an overview, J. Rare Earth., 31 (2013) 933-943.
 
 
 
[8] R.C. Oliveira, C. Jouannin, E. Guibal, O. Garcia, Samarium (III) and praseodymium (III) biosorption on Sargassum sp.: batch study, Process Biochem., 46 (2011) 736-744.
 
[9] S. Basha, Z. Murthy, Kinetic and equilibrium models for biosorption of Cr (VI) on chemically modified seaweed, Cystoseira indica, Process Biochem., 42 (2007) 1521-1529.
 
[10] M. Ghasemi, A.R. Keshtkar, R. Dabbagh, S.J. Safdari, Biosorption of uranium (VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: Breakthrough curves studies and modeling, J. Hazard. Mater., 189 (2011) 141-149.
 
[11] S. Basha, Z. Murthy, B. Jha, Removal of Cu (II) and Ni (II) from industrial effluents by brown seaweed, Cystoseira indica, Ind. Eng. Chem. Res., 48 (2008) 961-975.
 
[12] G. Panda, S. Das, A. Guha, Biosorption of cadmium and nickel by functionalized husk of Lathyrus sativus, Colloid. Surfaces B. 62 (2008) 173-179.
 
[13] M.A. Janusa, C.A. Champagne, J.C. Fanguy, G.E. Heard, P.L. Laine, A.A. Landry, Solidification/stabilization of lead with the aid of bagasse as an additive to Portland cement, Microchem. J. 65 (2000) 255-259.
 
[14] Y.H. Kim, J.Y. Park, Y.J. Yoo, J.W. Kwak, Removal of lead using xanthated marine brown alga, Undaria pinnatifida, Process biochem., 34 (1999) 647-652.
 
[15] M. Chanda, G. Rempel, Polybenzimidazole resin based new chelating agents. Palladium (II) and platinum (IV) sorption on resin with immobilized dithiooxamide, React. polym., 12 (1990) 83-94.
 
[16] A.R. Keshtkar, M.A. Hassani, Biosorption of thorium from aqueous solution by Ca-pretreated brown algae Cystoseira indica, Korean J. Chem. Eng., 31 (2014) 289-295.
 
[17] A.R. Keshtkar, F. Kafshgari, M.A. Mousavian, Binary biosorption of uranium (VI) and nickel (II) from aqueous solution by Ca-pretreated Cystoseira indica in a fixed bed column, J. Radioanal. Nucl. Chem., 292 (2012) 501-512.
 
[18] A. Özer, G. Gürbüz, A. Çalimli, B.K. Körbahti, Investigation of nickel (II) biosorption on Enteromorpha prolifera: optimization using response surface analysis, J. Hazard. Mater., 152 (2008) 778-788.
 
[19] M. Sarkar, P. Majumdar, Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead, Chem. Eng. J. 175 (2011) 376-387.
 
[20] D. Das, C.J.S. Varshini, N. Das, Recovery of lanthanum (III) from aqueous solution using biosorbents of plant and animal origin: Batch and column studies, Miner. Eng., 69 (2014) 40-56.
 
[21] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons 705 (2009).
 
[22] M. Jain, V. Garg, K. Kadirvelu, Investigation of Cr (VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology, Bioresource technol., 102 (2011) 600-605.
 
[23] M. Fereidouni, A. Daneshi, H. Younesi, Biosorption equilibria of binary Cd (II) and Ni (II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: Application of response surface methodology, J. Hazard. Mater., 168 (2009) 1437-1448.
 
[24] F. Ghorbani, H. Younesi, S.M. Ghasempouri, A.A. Zinatizadeh, M. Amini, A. Daneshi, Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae, Chem. Eng. J. 145 (2008) 267-275.
 
[25] Y.-S. Ho, A.E. Ofomaja, Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber, J. Hazard. Mater., 129 (2006) 137-142.
 
[26] N. Chiron, R. Guilet, E. Deydier, Adsorption of Cu (II) and Pb (II) onto a grafted silica: isotherms and kinetic models, Water Res., 37 (2003) 3079-3086.
 
[27] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. solids, J. Am. Chem. Soc., 38 (1916) 2221-2295.
 
[28] H. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) e470.
 
[29] M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta physiochim. URSS 12 (1940) 217-222.
 
[30] V. Murphy, H. Hughes, P. McLoughlin, Cu (II) binding by dried biomass of red, green and brown macroalgae, Water Res., 41 (2007) 731-740.
 
 
 
[31] N. Farinella, G. Matos, E. Lehmann, M. Arruda, Grape bagasse as an alternative natural adsorbent of cadmium and lead for effluent treatment, J. Hazard. Mater., 154 (2008) 1007-1012.
 
[32] H.A. Hasan, S.R.S. Abdullah, N.T. Kofli, S.K. Kamarudin, Isotherm equilibria of Mn 2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge, J. Environ. Manage., 111 (2012) 34-43.