نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، صندوق پستی: 57153-165، ارومیه ـ ایران

2 گروه فیزیک، دانشگاه صنعتی ارومیه، صندوق پستی: 16116-414، ارومیه ـ ایران

چکیده

در طول راه‌اندازی خنک، رآکتور در حالت زیربحرانی است، لذا نمی‌توان از چشمه‌ی نوترون خارجی صرف‌نظر کرد. در این مقاله یک حل تحلیلی در حضور چشمه‌ی نوترون تپی با یک گروه نوترون تأخیری در طول راه‌اندازی یک رآکتور آب تحت فشار با سوخت U235 ارایه شده است. حل تحلیلی براساس بسط چگالی نوترون در توان‌هایی از زمان تولید نوترون‌های آنی است. معادله‌های سینتیک نقطه‌ای با این روش برای واکنش‌پذیری‌های ثابت و خطی قابل حل است و به نتایج بهتری در مقایسه با کارهای تحلیلی دیگران می‌انجامند، ولی برای واکنش‌پذیری سینوسی، کارآمد نیست. بنابراین پاسخ چگالی نوترون به واکنش‌پذیری سینوسی به کمک بررسی نقاط ثابت و روش نمای لیاپانوف تحلیل شده است.
 

کلیدواژه‌ها

عنوان مقاله [English]

Neutron density study in sub-critical state with pulsed neutron source

نویسندگان [English]

  • Rasoul Khodabakhsh 1
  • Sohrab Behina 2
  • Masoud Seyedi 1

چکیده [English]

 During the cold start-up, the reactor is in sub-critical state. Therefore, the external neutron source cannot be neglected. In this research paper, the analytical solution of neutron point kinetics equations with a group of delayed neutrons in the presence of the pulsed neutron source in a pressurized-water reactor with 235U as a fuel is presented. The analytical solution is based on the expansion of the neutron density in powers of the prompt neutrons generation time. The point kinetics equations with this method are solvable for step and ramp reactivity and lead to better results compared with other analytical works, but are not solvable for sinusoidal reactivity. So, the neutron density response to sinusoidal reactivity is analyzed by using the fixed point and Lyapunov exponents method.
 

کلیدواژه‌ها [English]

  • Pulsed neutron source
  • Prompt neutrons generation time
  • Lyapunov exponent
  • Neutron density
[1] G.R. Keepin, Physics of reactor kinetics, Addison-Wesley Publishing Company, INC (1965).
[2] W.M. Stacey, Nuclear reactor physics, John Wiley and Sons, Inc., New York, United States of America, (2001).
[3] A.A. Nahla, Analytical solution to solve the point reactor kinetics equations, Nuclear Engineering and Design, 240 (2010)
1622-1629.
[4] A.E. Aboanber, Y.M. Hamada, Power series solution (PWS) of nuclear reactor dynamics with Newtonian temperature feedback, Annals of Nuclear Energy, 30 (2003a) 1111-1122.
[5] A.A. Nahla, Taylor’s series method for solving the nonlinear point kinetics equations, Nuclear Engineering and Design, 241 (2011)
1592-1595.
[6] A.E. Aboanber, A.M. El Mhlawy, Solution of two-point kinetics equations for reflected reactors using Analytical Inversion Method (AIM), Progress in Nuclear Energy, 51 (2009) 155-162.
[7] A.A. Nahla, Generalization of the analytical exponential model to solve the point kinetics equations of Be- and D2O-moderated reactors, Nuclear Engineering and Design, 238 (2008) 2648-2653.
[8] T. Sathiyasheela, Sub-critical reactor kinetics analysis using incomplete gamma functions and binomial expansions, Annals of Nuclear Energy, 37 (2010) 1248-1253.
[9] F. Zhang, W.Z. Chen, X.W. Gui, Analytic method study of point-reactor kinetic equation when cold start-up, Annals of Nuclear Energy 35 (2008) 746-749.
[10] D.A.P. Palma, A.S. Martinez, A.C. Gonçalves, Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor, Annals of Nuclear Energy, 36 (2009) 1469-1471.
[11] H. Li, W. Chen, L. Luo, Q. Zhu, A new integral method for solving the point reactor neutron kinetics equations, Annals of Nuclear Energy, 36 (2009) 427-432.
[12] A.A. Nahla, An analytical solution for the point reactor kinetics equations with one group of delayed neutrons and the adiabatic feedback model, Progress in Nuclear Energy, 51 (2009) 124-128.
[13] S.D. Hamieh, M. Saidinezhad, Analytical solution of the point reactor kinetics equations with temperature feedback, Annals of Nuclear Energy, 42 (2012) 148-152.
[14] R. Hilborn, Chaos and nonlinear dynamics, Oxford University Press, (2000).
[15] J.L. Munoz-Cobo, G. Verdu, C. Pereira, Dynamic reconstruction and Lyapunov exponents from time series data in boiling water reactors application to BWR stability analysis, Annals of Nuclear Energy, 19 (1992) 223-235.
[16] G.V. Durga Prased, M. Pandey, Stability analysis and nonlinear dynamics of natural circulation boiling water reactor, Nuclear Engineering and Design, 238 (2008) 229-240.
[17] C. Lange, D. Hennig, M. Schulze, A. Hurtado, Complex BWR dynamics from the bifurcation theory point of view, Annals of Nuclear Energy, 67 (2013) 91-108.
[18] C. Lange, D. Hennig, M. Schulze, A. Hurtado, Comments on the application of bifurcation analysis in BWR stability analysis, Progress in Nuclear Energy, 68 (2013) 1-15.
[19] E. Ott, Chaos in dynamical system, Cambridge University Press, Canada, (1993).
[20] J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge University Press, Cambridge, (1999).
[21] S.T. Strogatz, Nonlinear dynamics and chaos, Perseus Books Publishing, L.L.C (1994).
[22] R. Della, E. Alhassan, N.A. Adoo, C.Y. Bansah, B.J.B. Nyarko, E.H.K. Akaho, Stability analysis of the Ghana Research Reactor-1 (GHARR-1), Energy Conversion and Management, 74 (2013) 587-593.
[23] H. Shibata, Fluctuation of mean Lyapunov exponent for turbulence, Physica A, 292 (2001) 175-181.
[24] H. Shibata, Physica A, Fluctuation of mean Lyapunov exponent for a coupled map lattice model, 284 (2000) 124-130.
[25] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985) 285-317.
[26] D.L. Hetrick, Dynamics of nuclear reactors, American Nuclear Society, La Grange Park, (1993).