نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی چرخه‌ی سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 دانشکده‌ی مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران، صندوق پستی: 4563-11365، تهران ـ ایران

چکیده

در این پژوهش جذب زیستی توریم از محلول‌های آبی به وسیله‌ی پوست پرتقال و سلولز استحصال شده از آن مطالعه و با یک‌دیگر مقایسه شد. مطالعه‌های سینتیکی نشان داد که برای جذب توریم به وسیله‌ی پوست پرتقال مدل‌های سینتیکی الویچ و شبه مرتبه‌ی دوم و به وسیله‌ی سلولز مدل سینتیکی مرتبه‌ی دوم به خوبی با نتیجه‌های تجربی مطابقت دارد. هم‌دما‌های جذب لانگمویر، فروندلیچ، دوبینین- رادشکویچ، تمکین و ردلیش- پترسون بررسی و برای یافتن بهترین هم‌دما، سه روش تحلیل خطا شامل ضریب همبستگی (2R)، جذر متوسط مربع خطاها (RMSE) و آزمون مجذور کی (2χ) مورد استفاده قرار گرفت. تحلیل خطاها برای پوست پرتقال نشان داد که از میان مدل‌های هم‌دما به ترتیب، مدل ردلیش- پترسون، تمکین، دوبینین- رادشکویچ و فروندلیچ دارای کم‌ترین خطا هستند. در مورد سلولز هم‌دمای فروندلیچ دارای کم‌ترین خطا بود. یافته‌ها نشان داد که زمان لازم برای به تعادل رسیدن فرایند جذب توریم به وسیله‌ی پوست پرتقال 4 ساعت و به وسیله‌ی سلولز حدود 1 ساعت است. استفاده از سلولز پوست پرتقال به عنوان جاذب باعث افزایش سرعت جذب و کاهش زمان تعادل شده است.
 

کلیدواژه‌ها

عنوان مقاله [English]

Investigation and comparison of the kinetics and isotherms of thorium biosorption on orange peel and orange peel cellulose

نویسندگان [English]

  • Aliasghar Ghorbanpour Khamseh 1
  • Ahmad Movafaghpour 2
  • Seyed mohammadali Mosavian 2

چکیده [English]

In this research work, the biosorption of thorium from aqueous solutions by orange peel (OP) and orange peel cellulose (OPC) was studied and compared with each other. The kinetic studies showed that the Elovich and pseudo-second order kinetic models are well matched with the experimental results for the OP. For the case of OPC, the pseudo-second order kinetic models are well matched with the experment. The Langmuir, Freundlich, Dubinin–Radushkevich, Temkin and Redlich-Peterson isotherm models were also investigated. In order to find the best isotherm, three error analysis methods, i.e., correlation coefficient (R2), root mean square error (RMSE) and Chi square (χ2) were used. The error analysis showed that Redlich-Peterson, Temkin, Dubinin–Radushkevich and Freundlich models had miner errors, while the OPC Freundlich model had the smallest. Experimental results showed that the time required to reach the equilibrium is 4 h in the case of using OP as a biosorbent. In the case of using OPC as a biosorbent, the needed time to reach the equilibrium was about 1 h. Using OPC increases the adsorption rate and reduces the needed equilibrium time.
 

کلیدواژه‌ها [English]

  • Biosorption
  • Thorium
  • Orange Peel
  • Cellulose
  • Kinetic
[1] K. Furukawa, K. Arakawa, A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow, Energy Conversion and Management, 49 (2008), 1832-1848.
[2] M.S. Wickleder, B. Fourest, P.K. Dorhout, The Chemistry of the Actinide and Transactinide Elements, Springer, 1 (2010) 52-55.
[3] International Atomic Energy Agency, Thorium Fuel Cycle-Potential Benefits and Challenges, IAEA-TECDOC 1450, IAEA, Vienna (2005).
[4] S. Senthilkumaar, S. Bharathi, D. Nithyanandhi, V. Subburam, Biosorption of toxic heavy metals from aqueous solutions, Bioresource Technology, 75 (2000) 163-165.
[5] S.H. Lee, C.H. Jung, H. Chung, M.Y. Lee, J. Yang, Removal of heavy metals from aqueous solution by apple residues, Process Bio-chemistry, 33 (1998) 205-211.
[6] N. Basci, E. Kocadagistan, B. Kocadagistan, Biosorption of copper (II) from aqueous solutions by wheat shell, Desalination, 164 (2004) 135-140.
[7] T. Davis, B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae, Water Research, 37 (2003) 4311-4330.
[8] Y. Sag, A. Kaya, T. Kutsal, The simultaneous biosorption of Cu (II) and Zn on Rhizopus arrhizus: application of the adsorption models, Hydrometallurgy, 50 (1998) 297-314.
[9] Y. Shang, HS, Yang F, Yan Z, China Pat. Appl. Number: 01115505 (2001).
[10] Th.A. Johnson, N. Jain, H.C. Joshi, S. Prasad, Agricultural and agro-processing wastes as low cost adsorbents for metal removal from wastewater: A review, Journal of Scientific & Industrial Research, 67 (2008) 647-658.
[11] S.O. Lesmana, N. Febriana, F.E. Soetaredjo, J. Sunarso, S. Ismadji, Studies on potential applications of biomass for the separation of heavy metals from water and wastewater, Biochemical Engineering Journal, 44 (2009) 19-41.
[12] X. Li, Y. Tang, X. Cao, D. Lu, F. Luo, W. Shao, Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel, Colloid Surface. A: Physicochem. Eng. Aspects, 317 (2008) 512-521.
[13] S. Schiewer, M. Iqbal, The role of pectin in Cd binding by orange peel biosorbents: A comparison of peels, depectinated peels and pectic acid, Journal of Hazardous Materials, 177 (2010) 512-521.
[14] A.B. Perez-Marin, V. Meseguer Zapata, J.F. Ortuno, M. Aguilar, J. Saez, M. Lorens, Removal of cadmium from aqueous solutions by adsorption onto orange waste, Journal of Hazardous Materials B, 139 (2007) 122-131.
[15] M. Ajmal, R.A. Khan Rao, R. Ahmad, J. Ahmad, Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni from electroplating wastewater, Journal of Hazardous Materials B, 79 (2000) 117-131.
[16] M.R. Lasheen, N.S. Ammar, H.S. Ibrahim, Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies, Solid State Sciences, 14 (2012) 117-131.
[17] V. Lugo-Lugo, C. Brrera-Diaz. F. Urena-Nunez, B. Bilyeu, I. Linares-Henandez, Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel, Journal of Environmental Management, 112 (2012) 120-127.
[18] N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, Biosorption of heavy metals from aqueous solutions by chemically modified orange peel, Journal of Hazardous Materials, 185 (2011) 49-54.
[19] L. Lu, L. Chen, W. Shao, F. Luo, Equilibrium and kinetic modeling of Pb (II) Biosorption by a chemically modified orange peel containing cyanex 272, Journal of Chemical Engineering Data, 55 (2010) 4147-4153.
[20] N. Feng, X. Guo, S. Liang, Kinetic and thermodynamic studies on biosorption of Cu (II) by chemically modified orange peel, Transactions of Nonferrous Metals Society of China, 19 (2009) 1365-1370.
[21] X. Li, Y. Tang, Z. Xuan. Y. Liu, F. Luo, Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution, Separation and Purification Technology, 155 (2007) 69-75.
[22] Z. Xuan, Y. Tang, X. Li, Y. Liu, F. Luo, Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel, Biochemical Engineering Journal, 31 (2006) 160-164.
[23] S. Yusana, C. Gokb, S. Erenturka, S. Aytasa, Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: Evaluation of equilibrium, kinetic and thermodynamic data, Applied Clay Science, 67–68 (2012) 106–116.
[24] A. Prakash, M. Stigler, FAO Statistical Yearbook, food and agriculture Organization of the united nation, Rome (2012).
[25] B. Volesky, Sorption and biosorption, BV Sorbex, Inc. Montreal, (2005) 100-105.
[26] F. Balestrieri, D. Marini, Metodi di analisi chimica dei prodotti alimentary, Monolite Editrice SRL., 1 (1996) 127-128.
[27] J.U. Oubagaranadin, N. Sathyamurthy, Z.V.P. Murthy, Evaluation of Fuller’s earth for the adsorption of mercury from aqueous solutions: A comparative study with activated carbon, Journal of Hazardous Materials, 142 (2007) 165-174.
[28] M. Abdel Salam, M. Mokhtar, S.N. Basahel, S.A. Al-Thabaiti, A.Y. Obaid, Removal of chlorophenol from aqueous solutions by multi-walled carbon nanotubes: Kinetic and thermodynamic studies, Journal of Alloys and Compounds, 500 (2010) 87-92.
[29] C. Yin Kuo, H. Yu Lin, Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment, Desalination, 249 (2009) 87-92.
[30] Y.S. Ho, G. McKay, The sorption of lead (II) on peat, Water Research, 33 (1999) 578-584.
[31] Y.S. Ho, Removal of copper ions from aqueous solution by tree fern, Water Research, 37 (2003) 2323-2330.
[32] K. Vijayaraghavan, T.V.N. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models, Journal of Hazardous Materials, 133 (2006) 304-308.
[33] Y. Nuhoglu, E. Malkoc, A. Gurses, N. Canpolat, The removal of Cu (II) from aqueous solutions by Ulothrix zonata, Bioresource Technology, 85, 331-333 (2002).
[34] Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water, Air, and Soil Pollution, 141 (2002) 304-308.
[35] J. John, U. Kennedy Oubagaranadin, N. Sathyamurthy, Z.V.P. Murthy, Evaluation of Fuller’s earth for the adsorption of mercury from aqueous solutions: A comparative study with activated carbon, Journal of Hazardous Materials, 142 (2007) 165-174.
[36] S. Yang, J. Li, D. Shao, J. Hu, X. Wang, Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA, Journal of Hazardous Materials, 166 (2009) 109-116.
[37] C. Kutahyal, S. Sert, B. Cetinkaya, E. Yalcıntas, M. Bahadır Acar, Biosorption of Ce (III) onto modified Pinus brutia leaf powder using central composite design, Wood Science and Technology, 46 (2012) 721-736.
[38] B. Volesky, Detoxification of metal-bearing effluents: biosorption for the next century, Hydrometallurgy, 59 (2001) 203-216.
[39] J.M. Tobin, D.G. Cooper, R.J. Neufeld, Influence of anions on metal adsorption by Rhizopus arrhizus biomass, Biotechnol. Bioengineering, 30 (2007) 882-886.
[40] N. Kuyucak, B. Volesky, Desorption of cobalt-laden algal biosorption, Biotechnol. Bioengineering, 33 (1989) 815-822.
[41] M.S. Khani, Optimum conditions investigation and kinetic modelling of uranium biosorption by algae, (2004), Tehran University, M.SC. thesis.
[42] R. Gnanasambandam, A. Proctor, Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy, Food Chemistry, 68 (2000) 327-332.