In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

The aim of this study is preparing a conductive tissue equivalent composite similar to expensive and limited access commercial A-150 plastic, in which, the Conductive Carbon Nanotubes (CNT) are used instead of black carbon. For this rescan, to obtain more conductivity nanocomposites of polyamide/polyethylene (PA/PE) containing 1 to 4% carbon nanotube were made by melt mixing. The resulting electrical conductivity of the composite with 3% CNT reached to 3× 10-6 S/cm which is in the range of semi-conductive materials. The Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) pictures show an electrical network formation in continuous PA phase and at the interface of two phases. In the studies of mechanical properties, a significant increase in the modulus of PA/PE/CNT nanocomposite with 3% CNT was observed. Meanwhile, determination of the density and percentage of the elements ​​of this nanocomposite indicated that the obtained amounts were similar to that declared for the muscle tissue and A-150 plastic. Farther, Microdosimetry calculations showed that the linear energy distributions obtained from the microdosimeters with a wall of PA/PE/CNT nanocomposite and A-150, are well compatible. Therefore, this composite could be a suitable substitute for A-150, as an electrode of the gaseous microdosimeters

Highlights

  1. H.H. Rossi, M. Zaider, Microdosimetry and its applications, Springer-verlag (1996).

  2. ICRU Report 36, Microdosimetry, International Commission on Radiation Units, (1983).

  3. A. Moslehi, G. Raisali, M. Lamehi, Radiat. Prot. Dosim., 173, 286-292 (2017).

  4. L.A. Braby, G.W. Johnson, J. Barthe, Radiat. Prot. Dosim., 61, 351-379 (1995).

  5. F.R. Shonka, R.J. Ernest, F. Gioacchino, Method of using and manufacturing plastic equivalent to organic materials, US 3005794 (1961).

  6. J. Barthe, J.M. Bordy, Biological tissue-equivalent polymer composition having a very high resistivity, US 5569699A (1996).

  7. H. Pang, L. Xu, D. Yan, Z. Li, Prog. Poly. Sci., 39, 1908-1933 (2014).

  8. W. Zhang, A.A. Dehghani-Sanj, J. Mater. Sci., 42, 3408-3418 (2007).

  9. F. Xiang, Y. Shi, X. Li, T. Huang, C. Chen, Y. Peng, Y. Wang, Eur. Polym. J., 48, 350-361 (2012).

  10.  F. Tanasa, M. Zanoaga, Y. Mamunya, Int. Conf. Scientific Papers, (2015).

  11.  L. Li, W-H Ruan, M-Q Zhang, M-Z Rong, Polym. Letters, 9, 77-83 (2015).

  12.  H. Pang, D. Yan, Y. Bao, J.B. Chen, C. Chen, Z. Li, J. Mater. Chem., 22, 23568-23575 (2012).

  13.  S. Malekie, F. Ziaie, Nucl. Instrum. Methods Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791, 1-5 (2015).

  14.  N. Grossiord, J. Loos, L.V. Laake, M. Maugey, C. Zakri, C.E. Koning, A.J. Hart, Advanced Functional Materials, 18, 3226-3234 (2008).

  15.  P. Potschke, A.R. Bhattacharyya, A. Janke, Polymer, 44, 8061-8069 (2003).

  16.  L.J. Goodman, Phys. Med. Biol., 23, 753-758 (1978).

  17.  C. Constantinou, Tissue substitutes for particulate radiations and their use in radiation dosimetry and radiotherapy, PHD Thesis, 47 (1978).

  18.  M. Damijan, A. Natas, E. Pavs, F.X. Hart, Electric properties of tissues, www.lifvation. com.

  19.  S. Malekie, F. Ziaie, Nucl. Instrum. Methods, Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 816, 101-105 (2016).

  20.  L. Wang, J. Hong, G. Chen, Polym. Eng. Sci., 50, 2176-2181 (2010).

  21.  L.J. Goodman, Phys. Med. Biol., 23, 753-758 (1978).

  22.  Y. Mamunya, V. Levchenko, G. Boiteux, G. Seytre, M. Zanoaga, F. Tanasa, E. Lebedev, Polym. Composites, DOI 10.1002/pc.23434, (2015).

  23.  P.J. Brigandy, Electrically conductive multiphase polymer blend carbon based composites, Lehigh University, Theses and Dissertations, 26-27 (2014).

  24.  ICRU Report 44, Tissue substitutes in radiation dosimetry and measurements, International Commission on Radiation Units (1984).

Keywords

  1. H.H. Rossi, M. Zaider, Microdosimetry and its applications, Springer-verlag (1996).

  2. ICRU Report 36, Microdosimetry, International Commission on Radiation Units, (1983).

  3. A. Moslehi, G. Raisali, M. Lamehi, Radiat. Prot. Dosim., 173, 286-292 (2017).

  4. L.A. Braby, G.W. Johnson, J. Barthe, Radiat. Prot. Dosim., 61, 351-379 (1995).

  5. F.R. Shonka, R.J. Ernest, F. Gioacchino, Method of using and manufacturing plastic equivalent to organic materials, US 3005794 (1961).

  6. J. Barthe, J.M. Bordy, Biological tissue-equivalent polymer composition having a very high resistivity, US 5569699A (1996).

  7. H. Pang, L. Xu, D. Yan, Z. Li, Prog. Poly. Sci., 39, 1908-1933 (2014).

  8. W. Zhang, A.A. Dehghani-Sanj, J. Mater. Sci., 42, 3408-3418 (2007).

  9. F. Xiang, Y. Shi, X. Li, T. Huang, C. Chen, Y. Peng, Y. Wang, Eur. Polym. J., 48, 350-361 (2012).

  10.  F. Tanasa, M. Zanoaga, Y. Mamunya, Int. Conf. Scientific Papers, (2015).

  11.  L. Li, W-H Ruan, M-Q Zhang, M-Z Rong, Polym. Letters, 9, 77-83 (2015).

  12.  H. Pang, D. Yan, Y. Bao, J.B. Chen, C. Chen, Z. Li, J. Mater. Chem., 22, 23568-23575 (2012).

  13.  S. Malekie, F. Ziaie, Nucl. Instrum. Methods Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791, 1-5 (2015).

  14.  N. Grossiord, J. Loos, L.V. Laake, M. Maugey, C. Zakri, C.E. Koning, A.J. Hart, Advanced Functional Materials, 18, 3226-3234 (2008).

  15.  P. Potschke, A.R. Bhattacharyya, A. Janke, Polymer, 44, 8061-8069 (2003).

  16.  L.J. Goodman, Phys. Med. Biol., 23, 753-758 (1978).

  17.  C. Constantinou, Tissue substitutes for particulate radiations and their use in radiation dosimetry and radiotherapy, PHD Thesis, 47 (1978).

  18.  M. Damijan, A. Natas, E. Pavs, F.X. Hart, Electric properties of tissues, www.lifvation. com.

  19.  S. Malekie, F. Ziaie, Nucl. Instrum. Methods, Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 816, 101-105 (2016).

  20.  L. Wang, J. Hong, G. Chen, Polym. Eng. Sci., 50, 2176-2181 (2010).

  21.  L.J. Goodman, Phys. Med. Biol., 23, 753-758 (1978).

  22.  Y. Mamunya, V. Levchenko, G. Boiteux, G. Seytre, M. Zanoaga, F. Tanasa, E. Lebedev, Polym. Composites, DOI 10.1002/pc.23434, (2015).

  23.  P.J. Brigandy, Electrically conductive multiphase polymer blend carbon based composites, Lehigh University, Theses and Dissertations, 26-27 (2014).

  24.  ICRU Report 44, Tissue substitutes in radiation dosimetry and measurements, International Commission on Radiation Units (1984).