Document Type : Research Paper
Authors
Highlights
1. V. Amendola, and M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles, Phys. Chem. Chem. Phys. 11,3805 (2009).
2. S. Cheng-Yu et al. Zhigilei Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study, J. Phys. Chem. C 121,16549 (2017).
3. V. Oliveira, and R. Vilar, Finite element simulation of pulsed laser ablation of titanium carbide, Applied Surface Science 253,7810 (2007).
4. H. S. Lim, and J. Yoo, FEM based simulation of the pulsed laser ablation process in nanosecond fields, Journal of Mechanical Science and Technology 7,1811 (2011).
5. F.J. Al-Maliki, Detection of Random Laser Action from Silica Xerogel Matrices Containing Rhodamine 610 Dye and Titanium Dioxide Nanoparticles, Advances in Materials Physics and Chemistry 2, 110 (2012).
6. A. M. Brito-Silva et al. Random laser action in dye solutions containing Stöber silica nanoparticles, Journal of Applied Physics 108, 033508 (2010).
7. F. Luan et al. Lasing in nanocomposite random media, Nano Today 10, 168 (2015).
8. A. Bogaerts et al. Laser ablation for analytical sampling: what can we learn from modeling,Spectrochimica Acta Part B 58, 1867 (2003).
9 Z. Xianzhong et al. Ultraviolet femtosecond and nanosecond laser ablation of silicon : ablation efficiency and laser-induced plasma expansion, (2004).
10. J. Jeon et al. The Effect of Laser Pulse Widths on Laser-Ag Nanoparticle Interaction: Femto- to Nanosecon, Lasers Appl. Sci. 8, 112 (2018).
Keywords