In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

In this research, the oxidation resistance of pure Ti3SiC2 MAX phase that produced via infiltration of porous TiC preform, fabricated by the gel casting process, was evaluated via oxidation at different temperature of 500, 800, 1000, 1100, 1200, 1300 and 1400 oC under the oxygen atmosphere. The oxide phase composition on the surface of the samples was characterized by X-ray diffraction analysis. The thickness of the oxide layers on the surface was measured on the cross- section of the samples using scanning electron microscopy (SEM). To investigate the oxidation mechanism, the TG and DSC thermal analyses were carried out in the range of 25-1500˚C. The results showed that the high weight gains were not occurred up to 1000˚C, and the oxidation procedure was accelerated for the temperature above 1000˚C. The oxidaton reached a steady- state above 1400˚C. The results of the oxide layers thickness measuements showed that by increaseing temperature to 1400˚C, the oxide layer thickness increased to 121 µm.

Highlights

1. Corrosion of Zirconium Alloys in Nuclear Power Plants,” Doc. No IAEA-TECDOC-684 (Vienna, Austria: International Atomic Energy Agency, 1993).

2. N. Ramasubramanian, P. Billot, and S. Yagnik, Hydrogen Evolution and Pickup during the Corrosion of Zirconium Alloys: A Critical Evaluation of the Solid State and Porous Oxide Electrochemistry, ASTM Special Technical Publication. 1423, 222 (2002).

3. K. Satoru, F. Teruo and S. Motoe, Oxidation of Zircaloy-4 under High Temperature Steam Atmosphere and Its Effect on Ductility of Cladding, J. Nucl. Sci. Tech. 18, 589 (1977).

4. C.H. Henager, et al. Technical Report: Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials, U.S. Department of Energy under Contract, PNNL-23948, DE-AC05-76RL01830.

5. D. J. Tallman, Ph.D. Thesis, Drexel University, (2015).

6. J. Henry Ward, Ph.D. Thesis, University of Manchester, (2018).

7. D. J. Tallman, et al. Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121e1085 C temperature range, J. Nucl. Mater. 484, 120 (2017).

8. G. W. Bentzel, et al, On the Interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with Palladium at 900°C, J. Alloys and Compd. 771, 1103 (2019).

9. L. Cheng, S. Li and L. Zhang, The morphology of oxides and oxidation behavior of Ti3SiC2-based composite at high-temperature, Compos. Sci. Tech. 63, 813 (2003).

10. L. Cheng, S. Li and L. Zhang, Oxidation behavior of Ti3SiC2 at high temperature in air, Mater. Sci. Eng. A. 341, 112 (2002).

11. T. Chen, P. M. Green, J. L. Gordan, J. M. Hampikian and N. N. Thadhani, Oxidation of Ti3SiC2 composites in air, Metall. Mater. Trans. A. 33, 1737 (2002).

12. T. El-Raghy and M.W. Barsoum, Oxidation of Ti3SiC2in air, J. Electrochem. Soc. 144, 2508 (1997).

13. J. Jedlinski, Comments on the use of the two-stage-oxidation method and surface analytical techniques in studying growth processes of oxide scales, Oxid. Met. 39, 61 (1993).

14. H. HoDuc, Ph.D Thesis, Faculty of Drexel University, (2002).

15. H. Foratirad, H. R. Baharvandi and M. G. Maragheh, Effects of Dispersants on Dispersibility of Titanium Carbide Aqueous Suspension, J. Refract. Met. Hard. Mater. 56, 96 (2016).

16. H. Foratirad, H. R. Baharvandi and M. G. Maragheh, Synthesis of nanolayered Ti3SiC2 MAX phase via infiltration of porous TiC preform produced by the gelcasting process, Mater. Let. 72, 141 (2016).

17. H. Zhai, Z. Huang, Y. Zhou and Z. Zhang, Oxidation layer in sliding friction surface of high-purity Ti3SiC2, J. Mater. Sci. 39, 6635 (2004).

18. Z. Sun, Y. Zhouand and M. Li, Oxidation behavior of Ti3SiC2-based ceramic at 900- 1300 oC in air, Corr. Sci. 43, 1095 (2001).

19. D. Zhou and Z. Wang, Oxidation Behavior of Ti3SiC2-SiC Ceramic Composites, Materials Science Forum, 561-565, 687-691, 2007.

20. M. W. Barsoum and T. El-Raghy, Synthesis and Characterization of a Remarkable Ceramic:Ti3SiC2, J. Am. Ceram. Soc. 79, 1953 (1996).

21. S. Li, J. Xie, L. Zhang and L. Cheng, Mechanical properties and oxidation resistance of Ti3SiC2/SiC composite synthesized by in situ displacement reaction of Si and TiC, Mater. Let. 57, 3048 (2003).

22. M. W. Barsoum and T. El-Raghy, The MAX Phases: Unique New Carbide and Nitride Materials, Am. Sci. 89, 67 (2001).

Keywords

1. Corrosion of Zirconium Alloys in Nuclear Power Plants,” Doc. No IAEA-TECDOC-684 (Vienna, Austria: International Atomic Energy Agency, 1993).
2. N. Ramasubramanian, P. Billot, and S. Yagnik, Hydrogen Evolution and Pickup during the Corrosion of Zirconium Alloys: A Critical Evaluation of the Solid State and Porous Oxide Electrochemistry, ASTM Special Technical Publication. 1423, 222 (2002).
3. K. Satoru, F. Teruo and S. Motoe, Oxidation of Zircaloy-4 under High Temperature Steam Atmosphere and Its Effect on Ductility of Cladding, J. Nucl. Sci. Tech. 18, 589 (1977).
4. C.H. Henager, et al. Technical Report: Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials, U.S. Department of Energy under Contract, PNNL-23948, DE-AC05-76RL01830.
5. D. J. Tallman, Ph.D. Thesis, Drexel University, (2015).
6. J. Henry Ward, Ph.D. Thesis, University of Manchester, (2018).
7. D. J. Tallman, et al. Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121e1085 C temperature range, J. Nucl. Mater. 484, 120 (2017).
8. G. W. Bentzel, et al, On the Interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with Palladium at 900°C, J. Alloys and Compd. 771, 1103 (2019).
9. L. Cheng, S. Li and L. Zhang, The morphology of oxides and oxidation behavior of Ti3SiC2-based composite at high-temperature, Compos. Sci. Tech. 63, 813 (2003).
10. L. Cheng, S. Li and L. Zhang, Oxidation behavior of Ti3SiC2 at high temperature in air, Mater. Sci. Eng. A. 341, 112 (2002).
11. T. Chen, P. M. Green, J. L. Gordan, J. M. Hampikian and N. N. Thadhani, Oxidation of Ti3SiC2 composites in air, Metall. Mater. Trans. A. 33, 1737 (2002).
12. T. El-Raghy and M.W. Barsoum, Oxidation of Ti3SiC2in air, J. Electrochem. Soc. 144, 2508 (1997).
13. J. Jedlinski, Comments on the use of the two-stage-oxidation method and surface analytical techniques in studying growth processes of oxide scales, Oxid. Met. 39, 61 (1993).
14. H. HoDuc, Ph.D Thesis, Faculty of Drexel University, (2002).
15. H. Foratirad, H. R. Baharvandi and M. G. Maragheh, Effects of Dispersants on Dispersibility of Titanium Carbide Aqueous Suspension, J. Refract. Met. Hard. Mater. 56, 96 (2016).
16. H. Foratirad, H. R. Baharvandi and M. G. Maragheh, Synthesis of nanolayered Ti3SiC2 MAX phase via infiltration of porous TiC preform produced by the gelcasting process, Mater. Let. 72, 141 (2016).
17. H. Zhai, Z. Huang, Y. Zhou and Z. Zhang, Oxidation layer in sliding friction surface of high-purity Ti3SiC2, J. Mater. Sci. 39, 6635 (2004).
18. Z. Sun, Y. Zhouand and M. Li, Oxidation behavior of Ti3SiC2-based ceramic at 900- 1300 oC in air, Corr. Sci. 43, 1095 (2001).
19. D. Zhou and Z. Wang, Oxidation Behavior of Ti3SiC2-SiC Ceramic Composites, Materials Science Forum, 561-565, 687-691, 2007.
20. M. W. Barsoum and T. El-Raghy, Synthesis and Characterization of a Remarkable Ceramic:Ti3SiC2, J. Am. Ceram. Soc. 79, 1953 (1996).
21. S. Li, J. Xie, L. Zhang and L. Cheng, Mechanical properties and oxidation resistance of Ti3SiC2/SiC composite synthesized by in situ displacement reaction of Si and TiC, Mater. Let. 57, 3048 (2003).
22. M. W. Barsoum and T. El-Raghy, The MAX Phases: Unique New Carbide and Nitride Materials, Am. Sci. 89, 67 (2001).