In cooperation with the Iranian Nuclear Society

Investigation of Raman Spectra of B-Doped Carbon Nanotubes by Experimental, Computational and Simulation ‎Methods

Document Type : Research Paper

Authors

Abstract
In this paper due to the abundant and also different applications of carbon nanotubes doped with boron, molecular vibrations related to boron element were identified and investigated in B-doped carbon nanotubes by experimental, computational and simulation ‎methods. In the experimental approach, Raman spectra of MWCNTs and B- doped MWCNTs were recorded and the Raman active modes assigned to the relevant specific vibrations. In the computational approach, the vibrational frequencies of C-C and C-B (pure carbon chains and doped with boron) oscillators were simulated using simple harmonic oscillator model and shift of vibrational frequencies toward lower wavenumbers was observed. Finally, by software simulation approach, vibrational frequencies of carbon-carbon and carbon-boron were investigated using the Gaussian software. The D- band intensity increased as the boron concentration reached to 3% while the center of the peak downshifted by 8 cm-1 (1336 cm-1 ® 1328 cm-1). Doping of carbon nanotubes with the boron concentration in the range of 4 to 10% upshifted the D- band central position by 18 cm-1 (1328 cm-1® 1346 cm-1). The ID-IG ratio (the intensity of the disorder D mode divided by the intensity of the graphite G mode) was increased by B-doping of carbon nanotubes (0.75®1.5). In conclusion, the results of the present article reveals that the intensity and frequency variations of D and G modes in the pure and the B doped MWCNT structures were approved with acceptable accuracy by the experimental, computational and simulation methods.

Highlights

[1] M. Terrones, A. Jorio, M. Endo, A.M. Rao, Y.A. Kim, T. Hayashi, Master Today Mag, (October 2004) 30-45.

 

[2] Lowell C.E. J. Amer. Ceram. Solid Solution of Boron in Graphite, Soc., 50 (1967) 142.

 

[3] R. Czerw, P.W. Chiu, Y.M. Choi, D.S. Lee, D.L. Carroll, S. Roth, Y.W. Park, Substitutional boron – doping of Carbon nanotubes, Current  Applied  Phys., 2 (2002) 473–477. 

 

[4] D. Golberg, Y. Bando, W. Han, K. Kurashima, T. Sato, Chem. Phys. Lett., 308 (1999) 337–342.

 

[5] M. Endo, T. Hayashi, S.H. Hong, T. Enoki, M.S. Dresselhaus, J. Appl. Phys., 90 (2001) 5670–6574.

 

[6] C.E. Lowell, J. Amer. Ceram. Soc., 50 (1967) 142.

 

[7] The New Methods of Graphite Nodules Detection in Ductile Cast Iron, Materials and Manufacturing Processes, February (2011).

 

[8] Y. Hishiyama, H. Irumano, Y. Kaburagi, Y. Soneda, Phys. Rev. B., 63 (2001) 245406-1–11.

[9] E. Hernández, C. Goze, P. Bernier, A. Rubio, Elastic properties of single-wall nanotubes, Appl. Phys. A: Mater. Sci. Process. 68 (1999) 287. 

 

[10] S. Allen, G.A. Cooper, R. M. Mayer, Carbon Fibres of High Young's Modulus Nature volume 224, (15  November 1969) 684–685.

 

[11] An investigation of vapor deposited boron rich carbon–a novel graphite-like material–part I: the structure of BCx (C6B) thin films CT Hach, LE Jones, C Crossland, PA Thrower - Carbon, 1999 – Elsevier, 37 (1999) 221.

 

[12] Elastic properties of single-wall nanotubes E HernandezC Goze, P Bernier, A Rubio- Applied Physics A, 1999 – Springer, 68 (1999) 287.

 

[13] D. Golberg, Y. Bando, L. Bouurgeois: Large – Scale Synthesis and HARTEM analysis of single- walled B- and N- doped carbon nanotube bundles, Carbon., 38 (2000) 2017-2027.

 

[14] D.J. Gardiner, Practical Raman spectroscopy, Springer-Verlag. (1989), ISBN 978-0-387-50254-0.

Keywords


[1] M. Terrones, A. Jorio, M. Endo, A.M. Rao, Y.A. Kim, T. Hayashi, Master Today Mag, (October 2004) 30-45.
 
[2] Lowell C.E. J. Amer. Ceram. Solid Solution of Boron in Graphite, Soc., 50 (1967) 142.
 
[3] R. Czerw, P.W. Chiu, Y.M. Choi, D.S. Lee, D.L. Carroll, S. Roth, Y.W. Park, Substitutional boron – doping of Carbon nanotubes, Current  Applied  Phys., 2 (2002) 473–477. 
 
[4] D. Golberg, Y. Bando, W. Han, K. Kurashima, T. Sato, Chem. Phys. Lett., 308 (1999) 337–342.
 
[5] M. Endo, T. Hayashi, S.H. Hong, T. Enoki, M.S. Dresselhaus, J. Appl. Phys., 90 (2001) 5670–6574.
 
[6] C.E. Lowell, J. Amer. Ceram. Soc., 50 (1967) 142.
 
[7] The New Methods of Graphite Nodules Detection in Ductile Cast Iron, Materials and Manufacturing Processes, February (2011).
 
[8] Y. Hishiyama, H. Irumano, Y. Kaburagi, Y. Soneda, Phys. Rev. B., 63 (2001) 245406-1–11.
[9] E. Hernández, C. Goze, P. Bernier, A. Rubio, Elastic properties of single-wall nanotubes, Appl. Phys. A: Mater. Sci. Process. 68 (1999) 287. 
 
[10] S. Allen, G.A. Cooper, R. M. Mayer, Carbon Fibres of High Young's Modulus Nature volume 224, (15  November 1969) 684–685.
 
[11] An investigation of vapor deposited boron rich carbon–a novel graphite-like material–part I: the structure of BCx (C6B) thin films CT Hach, LE Jones, C Crossland, PA Thrower - Carbon, 1999 – Elsevier, 37 (1999) 221.
 
[12] Elastic properties of single-wall nanotubes E HernandezC Goze, P Bernier, A Rubio- Applied Physics A, 1999 – Springer, 68 (1999) 287.
 
[13] D. Golberg, Y. Bando, L. Bouurgeois: Large – Scale Synthesis and HARTEM analysis of single- walled B- and N- doped carbon nanotube bundles, Carbon., 38 (2000) 2017-2027.
 
[14] D.J. Gardiner, Practical Raman spectroscopy, Springer-Verlag. (1989), ISBN 978-0-387-50254-0.