In cooperation with the Iranian Nuclear Society

Biosorption of Thorium(IV) from Aqueous Solutions Using Ca-pretreated Leaf Powder of Orientals Platanus

Document Type : Research Paper

Authors

Abstract
: The potential use of a biosorbent, Ca-pretreated leaf powder of orientals platanus was investigated for the sorption of Th (IV) ions from aqueous solutions by considering equilibrium, kinetic and thermodynamic aspects by means of the batch method. Th­(IV) uptake by the leaf powder of oriental platanus was the pH, biosorbent dosage, contact time, initial adsorbate concentration, and temperature dependence. Biosorption process at the studied initial Th­(IV) ion concentrations followed the pseudo-second order kinetic model (R2=0.9957). The biosorption data could be well described by Langmuir isotherm in comparison to Freundlich and Dubinin- Radushkevich isotherms. The maximum adsorption capacity was  estimated to be 200 mg g-1 at 25°C with the pH of 3.5 by means of the Langmuir model. The thermodynamic parameters indicated that the biosorption of Th(IV) on the biomass was a feasible, spontaneous and endothermic process at the studied temperatures. The reusability of the biomass was also determined after five sorption-desorption cycles and the adsorption capacity decreased only by about 20%.

Keywords


[1] T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 368 (2010) 13-22.
 [ 2]       K. Chandra Sekhar, C.T. Kamala, N.S. Chary, Y. Anjaneyulu, Removal of heavy metals using a plant biomas with reference to evironemental control, International Journal of Mineral Processing, 68 (2003) 37-45.
 
[3] E.W. Wilde, J.R. Benemann, Bioremoval of heavy metals by the use of microalgae, Biotechnology Advances, 11 (1993) 781-812.
 
[4]        P. Ahuja, R. Gupta,
R.K. Saxena, Zn2+ biosorption by Oscillatoria anguistissima, Process Biochemistry, 34 (1999) 77–85.
 
[5]        S.K. Kazy, S.K. Das, P. Sar, Lanthanum biosorption by a pseudomonas species: equilibrium studies and chemical characterization, Journal of  Industrial Microbiology and Biotechnology, 33 (2006) 773–783.
 
[6]        M. Aoyama, Removal of Cr(VI) from aqueous solution by London plane leaves, Journal of chemical technology and biotechnology, 78 (2003) 601–604.
 
[7]        M. Stezos, Biosorbents for metal ions, CRC Press, D.A. John Wase,
London (1997) 11.
 
[8]        E. Yalçıntaş, Ş. Sert, C. Kütahyalı, B. Çetinkaya, M.B. Acar, Biosorption of uranium using modified leaf powder of Platanus Orientalis, 11th International Symposium on Environmental Radiochemical Analysis, 15-17 September 2010, Chester, UK, Environmental Radiochemical Analysis, 4 (2010) 61-79.
 
[9]        M. Aoyama, M. Tsuda, N.-S. Cho, S. Doi, Adsorption of trivalent chromium from dilute solution by conifer leaves, Wood science and  technology, 34 (2000) 55.
 
[11]      J.Y. Lee, E.K. Lee, Drying temperature can change the specific surface area of Phanerochaete chrysosporium pellets for copper adsorption. Biotechnology Letters, 20, (1998) 531–533.
 
[12]      J.M. Tobin, D.G. Cooper, R.J. Neufeld, Uptake of metal ions by Rhizopus arrhizus biomass, Applied and Environmental Micro-biology, 47 (1984) 821–824.
 
[13]      M. Galun, P. Keller, D. Malki, Removal of uranium (VI) from solution by fungal
biomass and fungal wall related biopolymers, Science 219 (1983) 285-286.
 
[14]      C.P. Huang, Dean Westman, Kenneth Quirk, J.P. Huang, The removal of Cd(II) from diluted aqueous solutions by Fungal adsorbent, Water Science and Technology, 20 (1988) 369-376.
 
[15]      M.R. Sangi, A. Shahmoradi, J. Zolgharnein, G.H. Azimi, M. Ghorbandoost, Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves, Journal of Hazardous Materials, 155 (2008) 513-522.
 
[16]      M. Aoyama, T. Sugiyama, S. Doi, N.-S Cho, H.-E. Kim, Removal of hexavalent chromium from dilute aqueous solution by Coniferous leaves, Holzforschung, 53 (1999) 365-368.
 
[17]      L. Hu, A.A. Adeyiga, T. Greer, E. Miamee, A. Adeyiga, Removal of metal ions from wastewater with roadside tree leaves, Chemical Engineering Communications, 189 (2002) 1587–1597.
 
[18]      S. Sert, C. Kutahyali, S. Inan, Z. Talip, B. Cetinkay, M. Eral, Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder, Hydrometallurgy, 90 (2008) 13-18.
 
[19]      C. Kütahyali, S. Sert, B. Çetinkaya, S. Inan, M. Eral, Factors affecting lanthanum and cerium biosorption on Pinus brutia leaf powder, Separation Science and Technology, 45 (2010) 1456–1462.
 
[20]      G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites. Water Research 18, (1984) 1501–1507.
 
[21]      J. Weber, J.C. Morris,  Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division [American Society of Civil Engineers] 89 (1963) 31-60.
 
[22]      S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, kungliga svenska vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
 
[23]      S. Gueu, B. Yao, K. Adouby, G. Ado, Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the plam tree, International Journal of Environmental Science and Technology (IJEST),  4 (2007) 11-17.
 
[24]      S.K. Kazy, S.K. Das, P. Sar, Lanthanum biosorption by a Pseudomonas species: equilibrium studies and chemical characterization, Journal of Industrial Micro-biology Biotechnology, 33 (2006) 773-783.
 
[25]      M.C. Palmieri, B. Volesky, O. Garcia, Biosorption of lanthanium using Sargassum Fluitans in batch system, Hydrometallury, 67 (2002) 31-36.
 
[26]      K. Vijayaraghavan, M.H. Han, S.B. Choi, Y-S. Yun, Biosorption of reactive black by Corynebacterium glutamicum biomass immobilized in alginate and polysulfone matrices. Chemosphere, 68 (2007) 1838-1845.
 
[27]      M. Al-Meshragi, H.G. Ibrahim, M.M. Aboabboud, Equilibrium and kinetics of chromium adsorption on cement kiln dust, Proceedings of the World Congress on Engineering and Computer Science (WCECS), October 22-24, San Francisco, USA (2008) 54-62.
 
 
 
 
 
 
 
 
 
[28]      M. Venkata SubbaiahY. VijayaA. Subba ReddyG. YuvarajaA. Krishnaiah, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto Trametes versicolor biomass, Desalination, 276 (2011) 310-316.
 
[29]      Atlas of Eh-pH diagrams intercomparison of thermodynamic databases, Geological Survey of Japan Open File Report No. 419 (May 2005).
 
[30]      M. Wazne, X. Meng, G.P. Korfiatis, C. Christodoulatos, Carbonate effects on hexavalent uranium removal from water by nano-crystalline titanium dioxide, Journal of Hazardous Material, 136 (1) (2005) 47-52.
 
[31]      S. Saxena, M. Prasad, S.F. D'Souza, Radionuclide sorption onto low-cost mineral adsorbent, Industrial and Engineering Chemistry Research, 45 (2006) 9122–9128.
 
[32]      X.P. Liao, B. Shi, Adsorption of fluoride on zirconium (IV)-impregnated collagen fiber, International Journal of Environmental Science and Technology (IJEST), 39 (2005) 4628–4632.
 
[33]      I. Ghodbane, O. Hamdaoui, Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies, J. Hazard. Mater. 160 (2008) 301–309.
 
[34]      R. Chitguppa, K.H. Chu, M.A. Hashim, Reusability of seaweed biosorbent in multiple cycles of cadmium adsorption and desorption, Biotechnology Techniques, 11(6) (1997) 371–373.
 
[35]       R. Bashardoost, F. Vahabzadeh, Sorption performance of  live and heat-inactivated Loofa-immobilized Phanerochaete chrysosporium in mercury removal from aqueous solution, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 29 (4) (2010).