In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

The Grad- Shafranov equation plays an important role in the analysis of the plasma equilibrium in magnetic confinement configurations such as tokamak. In tokamaks which are operating in Ohmic heating regime, the Grad- Shafranov equation can be expanded through the inverse aspect ratio parameter. Consequently, the first order of the poloidal flux function and poloidal/radial components of the magnetic field are obtained. It is possible to estimate the Shafranov equilibrium parameter in a semi-analytical approach just by means of one of the magnetic field components. In this study, the Shafranov equilibrium parameter was estimated by means of the poloidal magnetic field experimental data, measured by the Damavand tokamak magnetic probes.

Keywords

[1] J. Wesson, Tokamaks, Oxford University Press, (2011) 149-152.
 
[2] T. Takeda, S. Tokuda, Computation of MHD equilibrium of tokamak plasma, J. Com. Phys. 1 (1991) 93-201.
 
[3] S. Zheng, A. Wootton, E.R. Solano, Analytical tokamak equilibrium for shaped plasmas, Phys. Plasmas, 3 (1996) 1176-1185.
 
[4] C. Atanasiu, Analytical solutions to the Grad–Shafranov equation, Phys. Plasmas, 11 (2004) 3510-3516.
 
[5] A.J. Cerfon, J.P. Freidberg, One size fits all, analytic solutions to the Grad–Shafranov equation, Phys. Plasmas, 17 (2010) 032502-032508.
 
[6] K. Miyamoto, Plasma physics and controlled nuclear fusion, Springer, (2006) 38-45.
 
[7] V.D. Shafranov, On magnetohydrodynamical equilibrium configurations, Sov. JETP, 6 (1958) 545-566.
 
[8] V.S. Mukhovatov, V. Shafranov, Plasma equilibrium in a tokamak, Nucl. Fusion, 11 (1971) 605-617.
 
[9] J.P. Freidberg, Ideal magnetohydrodynamics, Plenum Publishing Company Limite, (1987) 315-325.
 
[10] S.P. Hakkarainen, R. Betti, J.P. Freidberg, R. Gormley, Natural elongation and triangularity of tokamak equilibria, Phys. of fluids B, 2(7) (1990) 1565-1572.
 
[11] J.P. Freidberg, M. Graf, A. Niemczewski, S. Schultz, Why βP and li cannot be separately measured in a near circular tokamak, Plasma Phys. Cont. Fusion 35 (1993) 1641-1655.
 
[12] V. Shafranov, Determination of the parameters βP and li in a Tokamak for arbitrary shape of plasma pinch cross-section, Plasma Phys., 13 (1971) 9-17.
 
[13] H. Ninomiya, N. Suzuki, Estimations of Plasma Position and βP+li/2 from Magnetic Measurements under High-β Conditions in JET-2, Jpn. J. Appl. Phys, 21 (1982) 1323-1330.
 
[14] B. Shen, Poloidal beta and internal inductance measurement on HT-7   superconducting tokamak, Rev. Sci. Instrum, 78 (2007) 093501-093510.
 
[15] A.S. Elahi, M. Ghoranneviss, Time evolution of the energy confinement time, internal inductance and edge saftey factor in IR-T1 tokamak, Phys. Scr. 81 (2010) 055501-055509.
 
[16] M. Emami, A.S. Elahi, M. Ghoranneviss, Analytical and experimental approaches in plasma displacement measurement in IR-T1 tokamak, J. Plasma Phys., 76 (2010) 67-72.
 
[17] A.S. Elahi, M. Ghoranneviss, M. Emami, A. Rahimi-Rad, Theoretical and experimental approach in poloidal beta and internal inductance measurment on IR-T1 tokamak, J. Fusion Energy, 8 (2009) 346-351.
 
[18] A. Rahimi-Rad, M. Ghoranneviss, Plasma position determination by using fixed boundary conditions in GSE solution versus experimental technique in IR-T1 Tokamak, Plasma Science, IEEE Transactions on 39 (2011) 3-10.
 
[19] M. Ariola, A. Pironti, Magnetic control of tokamak plasmas, Springer Verlag London limmited, 1st ed. (2008) 57-63.
 
[20] F. Dini, S. Khorasani, MHD equilibrium and Kink stability in Damavand Tokamak, J. Fusion Energy, 28 (2009) 282-286.
 
[21] R. Burden, J. Faires, A. Burden, Numerical analysis, Cengage Learning, (2015) 520-527.
 
[22] V. Pratt, Direct Least Squares Fitting of Algebraic Surfaces, ACM J. Computer Graphics, 21 (1987) 145-150.