In cooperation with the Iranian Nuclear Society

Calculation of temperature and density for dielectric- barrier discharge (DBD) plasma using COMSOL

Document Type : Research Paper

Authors

Abstract
In this paper, a one-dimensional simulation for discus plate dielectric barrier discharge (DBD) is done by COMSOL Multiphysics software. The effects of different parameters such as voltage, frequency, dielectric thickness, dielectric constant and electrode’s material on the temperature and density of electrons are investigated, it is found that secondary electron emission coefficient of the electrode, dielectric constant and the thickness of dielectric have a direct impact on the density of electron. The voltage increment from 5 to 50 kV, causes electron density growing from 4×1017m-3 to 3.2×1018m-3. Based on this study, electron density could reach up to the orders of 1018m-3 by optimizing material and dimensions of dielectric and electrodes without applying high voltage and frequency which results a significant lower production cost.

Highlights

1. U. Kogelschatz, B. Eliasson, W. Egli. Dielectric-Barrier Discharges, Principle and Applications, Journal de Physique IV Colloque, 07 (C4), C4-47-C4-66, (1997).

2. U. Kogelschatz, Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications, Plasma Chemistry and Plasma Processing, 23 (1), (March 2003).

3. A. Ozkan, et al, How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?, Plasma Sources Sci. Technol. 25, 025013 (2016). 

4.N.N. Misra, O. Schluter,  P.J. Cullen, Cold Plasma in Food and Agriculture Fundamentals and Applications, Academic Press is an imprint of Elsevier, 2th edition, (2016).

5. T.C. Corke, Overview of plasma flow control: concepts, optimization and applications, In: AIAA Paper 2005–563. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (2005).

6. Yu.B. Golubovskii, et al, Modelling of the homogeneous barrier discharge in helium at atmospheric pressure, Journal of Physics D: Applied Physics36 (1) (2002).

7. H.-Y. Zhang, D.-Z. Wang, X.-G. Wang, Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes, Chin. Phys. 16 (4), 1089-1096 (2007).

 

8. D. Petrović, et al, Fluid modelling of an atmospheric pressure dielectric barrier discharge in cylindrical geometry, J. Phys. D: Appl. Phys. 42 (20), 205206 (2009). 

9. U.N. Pal1, et al, Electrical modelling approach for discharge analysis of a coaxial DBD tube filled with argon, J. Phys. D: Appl. Phys. 42 (4), 045213 (2009).

10. R. Abidat, S. Rebiai, L. Benterrouche, Numerical simulation of atmospheric Dielectric Barrier Discharge in helium gas using COMSOL Multiphysics, 3rd International Conference on Systems and Control,  IEEE, (Oct 2013).

11. J. Pan, et al, Numerical simulation of evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge, The European Physical Journal D, Springer, (June 2016).

12. S. GadkariS. Gu, Numerical investigation of co-axial DBD: Influence of relative permittivity of the dielectric barrier, applied voltage amplitude, and frequency, Physics of Plasmas, 24, 053517, (2017).

13. F. Sohbatzadeh, H. Soltani, Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics, Journal of Theoretical and Applied Physics, 12, 53-63 (2018).

 

Keywords


1. U. Kogelschatz, B. Eliasson, W. Egli. Dielectric-Barrier Discharges, Principle and Applications, Journal de Physique IV Colloque, 07 (C4), C4-47-C4-66, (1997).

2. U. Kogelschatz, Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications, Plasma Chemistry and Plasma Processing, 23 (1), (March 2003).

3. A. Ozkan, et al, How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?, Plasma Sources Sci. Technol. 25, 025013 (2016). 

4.N.N. Misra, O. Schluter,  P.J. Cullen, Cold Plasma in Food and Agriculture Fundamentals and Applications, Academic Press is an imprint of Elsevier, 2th edition, (2016).

5. T.C. Corke, Overview of plasma flow control: concepts, optimization and applications, In: AIAA Paper 2005–563. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (2005).

6. Yu.B. Golubovskii, et al, Modelling of the homogeneous barrier discharge in helium at atmospheric pressure, Journal of Physics D: Applied Physics36 (1) (2002).

7. H.-Y. Zhang, D.-Z. Wang, X.-G. Wang, Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes, Chin. Phys. 16 (4), 1089-1096 (2007).

 

8. D. Petrović, et al, Fluid modelling of an atmospheric pressure dielectric barrier discharge in cylindrical geometry, J. Phys. D: Appl. Phys. 42 (20), 205206 (2009). 

9. U.N. Pal1, et al, Electrical modelling approach for discharge analysis of a coaxial DBD tube filled with argon, J. Phys. D: Appl. Phys. 42 (4), 045213 (2009).

10. R. Abidat, S. Rebiai, L. Benterrouche, Numerical simulation of atmospheric Dielectric Barrier Discharge in helium gas using COMSOL Multiphysics, 3rd International Conference on Systems and Control,  IEEE, (Oct 2013).

11. J. Pan, et al, Numerical simulation of evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge, The European Physical Journal D, Springer, (June 2016).

12. S. GadkariS. Gu, Numerical investigation of co-axial DBD: Influence of relative permittivity of the dielectric barrier, applied voltage amplitude, and frequency, Physics of Plasmas, 24, 053517, (2017).

13. F. Sohbatzadeh, H. Soltani, Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics, Journal of Theoretical and Applied Physics, 12, 53-63 (2018).