Document Type : Research Paper
Authors
1 Physics Department, University of Bu-Ali Sina, Postalcode: 19395-3697, Hamedan- Iran
2 Physics Department, Payame Noor University, P.O. Box: 19395-3697, Tehran- Iran
3 Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box: 13145-1384, Tehran- Iran
4 Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box: 11365-3486, Tehran- Iran
Highlights
1. J.H. Lawrence, E.O. Lawrence, The biological action of neutron rays, P Natl Acad Sci USA, 22(2), 124 (1936).
2. R.E. Zirkle, P.C. Aebersold, E.R. Dempster, The relative biological effectiveness of fast neutrons and X-rays upon different organisms, Am. J. Cancer Res, 29(3), 556 (1937).
3. I. Lampe, Ph.D thesis, University of Pennsylvania, (1938).
4. R.S. Stone, Neutron therapy and specific ionization, Ajr 59, 771 (1948).
5. L.H. Gray et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy, Bjr, 26(312), 638 (1953).
6. A.D. Conger et al. Quantitative relation of RBE in Tradescantia and average LET of gamma-rays, X-rays, and 1.3-, 2.5-, and 14.1-Mev fast neutrons, Radiation Research, 9(5), 525 (1958).
7. J. Fowler et al. Experiments with Fractionated X-irradiation of the Skin of Pigs II.–Fractionation up to Five Days, Bjr, 38(448), 278 (1965).
8. J. Fowler et al. Experiments with fractionated X-ray treatment of the skin of pigs. I—Fractionation up to 28 days, Bjr, 36(423), 188 (1963).
9. M. Catterall, M.S.c thesis, SAGE Publications, Sage Publications, (1972).
10. R.L. Morgan, AIP Conference Proceedings, (American Institute of Physics, New York, 1972), 562-577 (1972).
11. D. Bewley, A comparison of the response of mammalian cells to fast neutrons and charged particle beams, Radiat Res, 34(2), 446 (1968).
12. W. Duncan, Exploitation of the oxygen enhancement ratio in clinical practice, Br. Med, 29(1), 33 (1973).
13. F. Wagner, B. Loeper-Kabasakal, H. Breitkreutz, Neutron medical treatment of tumours—a survey of facilities, J Instrum, 7(03) C03041 (2012).
14. O. Kozak et al. The role of heavy ions in fast neutron therapy, Rost, 1(2). 10 (2018).
15. S.K. Schaub et al. Does Neutron Radiation Therapy Potentiate an Immune Response to Merkel Cell Carcinoma?, Ijpt, 5(1), 183 (2018).
16. R.R. Wilson, Nuclear radiation at Hiroshima and Nagasaki, Radiat Res 4(5), 349 (1956).
17. J. Malik, Yields of the Hiroshima and Nagasaki nuclear explosions, (Los Alamos National Lab.(LANL), United States, 1985).
18. W.J. Schull, Late radiation responses in man: current evaluation from results from Hiroshima and Nagasaki, Adv Space Res, 3(8), 231 (1983).
19. W. Rühm, L. Walsh, M. Chomentowski, Choice of model and uncertainties of the gamma-ray and neutron dosimetry in relation to the chromosome aberrations data in Hiroshima and Nagasaki, Radiat. Environ. Biophys, 42(2) 119 (2003).
20. R. Sakata et al. Long-term effects of the rain exposure shortly after the atomic bombings in Hiroshima and Nagasaki, Radiat Res, 182(6), 599 (2014).
21. A.S. Wilson, M.J. Ward, C.A. Haniff, High-resolution emission-line imaging of Seyfert galaxies. II. Evidence for anisotropic ionizing radiation, Apj, 334, 121 (1988).
22. A. Edwards, RBE of radiations in space and the implications for space travel, Aifb, 17, 147 (2001).
23. S. Kodaira et al. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters, Adv Space Res, 53(1), 1 (2014).
24. S.J. Mortazavi, J. Cameron, A. Niroomand-Rad, Adaptive response studies may help choose astronauts for long-term space travel, Adv Space Res, 31(6), 1543 (2003).
25. U. Schneider, L. Walsh, Cancer risk above 1 Gy and the impact for space radiation protection, Adv Space Res, 44(2) 202 (2009).
26. G. Baiocco et al. The origin of neutron biological effectiveness as a function of energy, Sci. Rep, 6, 4033 (2016).
27. A. Ottolenghi et al. The ANDANTE project: a multidisciplinary approach to neutron RBE, Radiat Prot Dosim, 166(1-4), (2015).
28. R.D. Stewart et al. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions, Phys Med Biol 60(21), 8249. (2015).
29. Seth et al. Neutron exposures in human cells: bystander effect and relative biological effectiveness, Plos One, 9(6), e98947 (2014).
30. N. Gajendiran, K. Tanaka, N. Kamada, Comet assay to assess the non-target effect of neutron-radiation in human peripheral blood, Radiat Res, 42(2), 157 (2001).
31. M. Mokari et al. Track structure simulation of low energy electron damage to DNA using Geant4-DNA, Biomed Phys Eng Express, 4, 6 (2018).
32. F. Semsarha et al. Microdosimetry of DNA conformations: relation between direct effect of 60Co gamma rays and topology of DNA geometrical models in the calculation of A-, B-and Z-DNA radiation-induced damage yields, Radiat. Environ. Biophys, 55(2) 243 (2016).
33. M. Bernal et al. The influence of DNA configuration on the direct strand break yield, Comput Math Method M, 2015.
34. D. Charlton, H. Nikjoo, J. Humm, Calculation of initial yields of single-and double-strand breaks in cell nuclei from electrons, protons and alpha particles, Int J Radiat Oncol Biol Phys, 56(1), 1 (1989).
35. W. Friedland et al. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC, Utat Res-Fund Mol M, 711(1) 28 (2011).
36. H. Nikjoo et al. Modelling of DNA damage induced by energetic electrons (100 eV to 100 keV), Radiat Prot Dosim, 99(1-4) 77 (2002).
37. H.M. Berman et al. The protein data bank, Nucleic Acids Res, 28(1) 235 (2000).
38. H.M. Berman, The protein data bank: a historical perspective, Acta Cryst, 64(1), 88 (2008).
39. F. Semsarha et al. An investigation on the radiation sensitivity of DNA conformations to 60 Co gamma rays by using Geant4 toolkit, Nimb, 323, 75 (2014).
40. S. Incerti. Comparison of GEANT4 very low energy cross section models with experimental data in water, Medical physics, 37(9), 4692 (2010).
41. S. Incerti et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project, Med Phys, 45(8), 722 (2018).
42. M. Chadwick et al. ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets, 112(12), 2887 (2011).
43. Y. Hsiao, R. Stewart, Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes, Phys. Med, 53(1), 233 (2007).
44. J.B. Marion, F.C. Young, Nuclear reaction analysis: graphs and tables, North-Holland (1968).
45. A. Ribon et al. Status of Geant4 hadronic physics for the simulation of LHC experiments at the start of LHC physics program, Cern-Lcgapp-2010-02, 2010.
46. M. Bernal, J. Liendo, An investigation on the capabilities of the PENELOPE MC code in nanodosimetry, Med Phys, 36(2), 62 (2009).
47. E. Schmid et al. RBE of nearly monoenergetic neutrons at energies of 36 keV–14.6 MeV for induction of dicentrics in human lymphocytes, Radiat. Environ. Biophys, 42(2), 87 (2003).
Keywords