In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

1 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran, Iran

2 Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, P.O.Box: 14115-175, Tehran - Iran

Abstract

One of the most common laser proton acceleration mechanism is Target Normal Sheath Acceleration (TNSA) method. The use of a foam layer in front of the main target plays an important role in the amount of laser energy absorption by the electrons and consequently the acceleration of the proton. The front layer can be either uniform and homogeneous or nano-structured. In this study, by assuming a nanostructured foam layer, and using two-dimensional particle simulations code, the effect of nanoparticle’s radius on the proton cut-off energy is investigated. Particles with radii of 10, 60 and 120 nm and random sizes in the range of 10 to 120 nm have been studied and simulated in a front layer with thickness of 10 and 20 μm with near-critical average density at laser intensity (I≈1020W/cm2). According to the results, in the case of thin foam layer, the differences of electron and consequently proton spectra are negligible. However, by increasing the foam thickness, the influence of nanoparticle radius causes a further dissociation in the final proton energy spectra. So that, the proton energy increases almost 45% by reducing the nanoparticle size from 120 nm to 10 nm.

Highlights

1.         V. Veksler, The principle of coherent acceleration of charged particles, The Soviet Journal of Atomic Energy, 2(5), 525 (1957(
2.         E. Clark, et al. Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids, Phys. Revi. Lett. 85(8), 1654 (2000).
3.         P. Poole, et al. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime, New J. Phys. 20(1), 013019 (2018).
4.         H. Daido, M. Nishiuchi, A.S. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Progr. Phys. 75(5), 056401 (2012).
5.         W. Leemans, et al., Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime, Phys. Rev. Lett. 113(24), 245002 (2014).
6.         F. Wagner, et al. Maximum proton energy above 85 mev from the relativistic interaction of laser pulses with micrometer thick ch 2 targets, Phys. Rev. Lett. 116(20), 205002 (2016).
7.         S. Wilks, et al. Energetic proton generation in ultra-intense laser–solid interactions, Physics of plasmas, 8(2), 542 (2001).

 

8.         D. Neely, et al. Enhanced proton beams from ultrathin targets driven by high contrast laser pulses, Appl. Phys. Lett. 89(2), 021502 (2006).
9.         D. Margarone, et al. Laser-driven proton acceleration enhancement by nanostructured foils,

Keywords

1.         V. Veksler, The principle of coherent acceleration of charged particles, The Soviet Journal of Atomic Energy, 2(5), 525 (1957(
2.         E. Clark, et al. Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids, Phys. Revi. Lett. 85(8), 1654 (2000).
3.         P. Poole, et al. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime, New J. Phys. 20(1), 013019 (2018).
4.         H. Daido, M. Nishiuchi, A.S. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Progr. Phys. 75(5), 056401 (2012).
5.         W. Leemans, et al., Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime, Phys. Rev. Lett. 113(24), 245002 (2014).
6.         F. Wagner, et al. Maximum proton energy above 85 mev from the relativistic interaction of laser pulses with micrometer thick ch 2 targets, Phys. Rev. Lett. 116(20), 205002 (2016).
7.         S. Wilks, et al. Energetic proton generation in ultra-intense laser–solid interactions, Physics of plasmas, 8(2), 542 (2001).
 
8.         D. Neely, et al. Enhanced proton beams from ultrathin targets driven by high contrast laser pulses, Appl. Phys. Lett. 89(2), 021502 (2006).
9.         D. Margarone, et al. Laser-driven proton acceleration enhancement by nanostructured foils, Phys. Rev. Lett. 109(23), 234801 (2012).
10.       F. Dollar, et al. High contrast ion acceleration at intensities exceeding 10 21 W cm-2, Phys. Plasmas. 20(5), 056703 (2013).
11.       T. Bartal, et al., Focusing of short-pulse high-intensity laser-accelerated proton beams, Nat. Phys. 8(2), 139 (2012).
12.       A. Sgattoni, et al. Laser ion acceleration using a solid target coupled with a low-density layer, Phys. Rev. E. 85(3), 036405 (2012).
13.       E. Yazdani, et al. Enhanced laser ion acceleration with a multi-layer foam target assembly, Laser Part. Beams. 32(4), 509 (2014).
14.       L. Fedeli, et al. Ultra-intense laser interaction with nanostructured near-critical plasmas, Sci. Rep. 8(1), 3834 (2018).
15.       L. Fedeli, et al. Parametric investigation of laser interaction with uniform and nanostructured near-critical plasmas. Eur. Phys. J. D. 71(8), 202 (2017).
16.       A. Sgattoni, et al. Optimising piccante-an open source particle-in-cell code for advanced simulations on tier-0 systems, arXiv preprint arXiv:1503.02464 (2015).